GURU PEMBELAJAR

MODUL PELATIHAN GURU
Program Keahlian : Teknik Mesin
Paket Keahlian : Teknik Fabrikasi Logam
Sekolah Menengah Kejuruan (SMK)

Profesional :
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)

Pedagogik :
TEKNIK KOMUNIKASI EFEKTIF DALAM PEMBELAJARAN

DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN
KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
2016
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)

PAKET KEAHLIAN : TEKNIK FABRIKASI LOGAM

PROGRAM KEAHLIAN : TEKNIK MESIN

Penyusun:
Tim PPPPTK
BMTI

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN
2015
KATA PENGANTAR

Undang-Undang Republik Indonesia Nomor 14 Tahun 2005 tentang Guru dan Dosen mengamanatkan adanya pembinaan dan pengembangan profesi guru secara berkelanjutan sebagai aktualisasi dari profesi pendidik. Pengembangan Keprofesian Berkelanjutan (PKB) dilaksanakan bagi semua guru, baik yang sudah bersertifikat maupun belum bersertifikat. Untuk melaksanakan PKB bagi guru, pemetaan kompetensi telah dilakukan melalui Uji Kompetensi Guru (UKG) bagi semua guru di di Indonesia sehingga dapat diketahui kondisi objektif guru saat ini dan kebutuhan peningkatan kompetensinya.

Modul ini disusun sebagai materi utama dalam program peningkatan kompetensi guru mulai tahun 2016 yang diberi nama diklat PKB sesuai dengan mata pelajaran/paket keahlian yang diampu oleh guru dan kelompok kompetensi yang diindikasi perlu untuk ditingkatkan. Untuk setiap mata pelajaran/paket keahlian telah dikembangkan sepuluh modul kelompok kompetensi yang mengacu pada kebijakan Direktorat Jenderal Guru dan Tenaga Kependidikan tentang pengelompokkan kompetensi guru sesuai jabaran Standar Kompetensi Guru (SKG) dan indikator pencapaian kompetensi (IPK) yang ada di dalamnya. Sebelumnya, soal UKG juga telah dikembangkan dalam sepuluh kelompok kompetensi. Sehingga diklat PKB yang ditujukan bagi guru berdasarkan hasil UKG akan langsung dapat menjawab kebutuhan guru dalam peningkatan kompetensinya.

Sasaran program strategi pencapaian target RPJMN tahun 2015–2019 antara lain adalah meningkatnya kompetensi guru dilihat dari Subject Knowledge dan Pedagogical Knowledge yang diharapkan akan berdampak pada kualitas hasil belajar siswa. Oleh karena itu, materi yang ada di dalam modul ini meliputi kompetensi pedagogik dan kompetensi profesional. Dengan menyatukan modul kompetensi pedagogik dalam kompetensi profesional diharapkan dapat mendorong peserta diklat agar dapat langsung menerapkan kompetensi pedagogiknya dalam proses pembelajaran sesuai dengan substansi materi yang diampunya. Selain dalam bentuk hard-copy, modul ini dapat diperoleh juga dalam bentuk digital, sehingga guru dapat lebih mudah mengaksesnya kapan saja dan dimana saja meskipun tidak mengikuti diklat secara tatap muka.

Kepada semua pihak yang telah bekerja keras dalam penyusunan modul diklat PKB ini, kami sampaikan terima kasih yang sebesar-besarnya.

Jakarta, Desember 2015
Direktur Jenderal,

Sumarna Surapranata, Ph.D
NIP: 195908011985031002
DAFTAR ISI

DAFTAR ISI .. ii
DAFTAR GAMBAR ... vi
DAFTAR TABEL .. ix
PENDAHULUAN .. 1
 A. Latar Belakang ... 1
 B. Tujuan .. 2
 C. Peta Kompetensi ... 3
 D. Ruang Lingkup .. 3
 E. Saran Cara Penggunaan Modul ... 4

KEGIATAN PEMBELAJARAN ... 6

KEGIATAN PEMBELAJARAN 1 : TEKNIK KOMUNIKASI EFEKTIF DALAM PEMBELAJARAN .. 6
 A. Tujuan .. 6
 B. Indikator Pencapaian Kompetensi .. 6
 C. Uraian Materi ... 7
 D. Aktivitas Pembelajaran .. 49
 E. Rangkuman ... 61
 G. Kunci Jawaban ... 63

KEGIATAN PEMBELAJARAN 2 : Kesehatan dan Keselamatan Kerja pada Proses Las TIG/GTAW ... 64
 A. Tujuan .. 64
 B. Indikator Pencapaian Kompetensi .. 64
 C. Uraian Materi ... 64
 D. Aktivitas Pembelajaran .. 79
 E. Rangkuman ... 82
F. Tes Formatif..83
G. Kunci Jawaban ...85

KEGIATAN PEMBELAJARAN 3 : Peralatan Pengelasan pada Proses Las TIG/GTAW ...94
A. Tujuan ...94
B. Indikator Pencapaian Kompetensi..94
C. Uraian Materi..94
D. Aktivitas Pembelajaran...107
E. Rangkuman...109
F. Tes Formatif...110
G. Kunci Jawaban ..112

KEGIATAN PEMBELAJARAN 4 : Elektroda Tungsten, Bahan Tambah (Filler Rod) dan Gas Pelindung pada Proses Las TIG/GTAW ...126
A. Tujuan ...126
B. Indikator Pencapaian Kompetensi..126
C. Uraian Materi..126
D. Aktivitas Pembelajaran...143
E. Rangkuman...145
F. Tes Formatif...147
G. Kunci Jawaban ..149

KEGIATAN PEMBELAJARAN 5 : Persiapan Pengelasan..164
A. Tujuan ...164
B. Indikator Pencapaian Kompetensi..164
C. Uraian Materi..164
D. Aktivitas Pembelajaran...193
E. Rangkuman...195
F. Tes Formatif...197
G. Kunci Jawaban ..201

KEGIATAN PEMBELAJARAN 6 : Pembuatan Rigi-rigi Las210
A. Tujuan ...210
B. Indikator Pencapaian Kompetensi
C. Uraian Materi
D. Aktivitas Pembelajaran
E. Rangkuman
F. Tes Formatif
G. Kunci Jawaban

KEGIATAN PEMBELAJARAN 7: Pengelasan Sambungan Tumpul (Butt joint) 1G dan 2G TIG/GTAW pada Pelat Baja Lunak dan/ atau Stainless Steel
A. Tujuan
B. Indikator Pencapaian Kompetensi
C. Uraian Materi
D. Aktivitas Pembelajaran
E. Rangkuman
F. Tes Formatif
G. Kunci Jawaban

KEGIATAN PEMBELAJARAN 8: Praktek Pengelasan Sambungan Sudut (Fillet joint) 1F dan 2F TIG/GTAW pada Pelat Baja Lunak dan atau Stainless Steel
A. Tujuan
B. Indikator Pencapaian Kompetensi
C. Uraian Materi
D. Aktivitas Pembelajaran
E. Rangkuman
F. Tes Formatif
G. Kunci Jawaban

KEGIATAN PEMBELAJARAN 9: Pemeriksaan Hasil Las
A. Tujuan
B. Indikator Pencapaian Kompetensi
C. Uraian Materi
D. Aktivitas Pembelajaran
DAFTAR GAMBAR

Gambar 1.1: Interaksi guru ..7
Gambar 1.2: Model Komunikasi ..9
Gambar 1.3: Model Komunikasi Efektif ..10
Gambar 2.1: Penempatan Tabung Gas ..66
Gambar 2.2: Troli pemindah tabung gas ...67
Gambar 2.3: Posisi tubuh sewaktu mengelas ...72
Gambar 2.4: Penyedot asap las local ..72
Gambar 2.5: Alat Pelindung Diri Welder ..76
Gambar 2.6: Jenis-jenis alat pelindung diri (APD) ..76
Gambar 3.1 : Skema rangkaian mesin las GTAW ..93
Gambar 3.2 : Rangkaian Mesin Las GTAW/TIG ..93
Gambar 3.3: Torch berpendingin air ..94
Gambar 3.4: Torch berpendingin udara ...95
Gambar 3.5: Skema fungsi torch ..96
Gambar 3.6: Nosel torch ..97
Gambar 3.7: Bagian-bagian torch las GTAW ..98
Gambar 3.8: Pemasangan kolet dan nosel ...99
Gambar 3.9: Pemasangan elektroda dan tutup ...99
Gambar 3.10: Bagian-bagian torch yang harus dirawat ..100
Gambar 3.11: Prinsip Kerja Regulator Gas GTAW ...102
Gambar 3.12: Regulator Gas dengan Manometer Jarum ..102
Gambar 3.13: Regulator Gas dengan Flowmeter Gelas Pengukur ..103
Gambar 4.1: Macam-macam Tungsten ...125
Gambar 4.2: Tungsten 2% Thoriated ...126
Gambar 4.3: Tungsten 0.8% Zirconiated ..126
Gambar 4.4: Tungsten 1% dan 1,5% Lanthanated ...127
Gambar 4.5: Tungsten 2% Ceriated ...127
Gambar 4.6: Penggerindaan elektroda ... 128
Gambar 4.7: Tungsten grinder ... 129
Gambar 4.8: Sudut ujung elektroda ... 129
Gambar 4.9: Ujung Elektroda berdasarkan Polaritas 129
Gambar 4.10: Kemasan bahan pengisi .. 131
Gambar 4.11: Bahan pengisi untuk baja karbon ... 132
Gambar 4.12: Bahan pengisi untuk logam stainless steel 132
Gambar 4.13: Bahan pengisi untuk logam alumunium 133
Gambar 4.14: Bentuk busur berdasarkan gas pelindung 135
Gambar 4.15: Grafik hubungan aliran gas dengan tebal logam induk dan ukuran nosel 137
Gambar 5.1: Posisi pengelasan pada butt joint welds 159
Gambar 5.2: Posisi pengelasan pada fillet joint welds 159
Gambar 5.3: Parameter sambungan ... 160
Gambar 5.4: Simbol pengelasan .. 169
Gambar 5.5: Simbol las butt joint ... 169
Gambar 5.6: Simbol las fillet joint ... 170
Gambar 5.7: Simbol las T joint .. 170
Gambar 5.8: Simbol field weld ... 171
Gambar 5.9: Simbol las kontur ... 171
Gambar 5.10: Simbol finishing las .. 171
Gambar 5.11: Distorsi memanjang ... 179
Gambar 5.12: Distorsi melintang ... 179
Gambar 5.13: Distorsi menyudut ... 180
Gambar 5.14: Las catat ... 181
Gambar 5.15: Alat bantu las ... 181
Gambar 5.16: Pengaturan letak bahan ... 182
Gambar 5.17: Pengaturan jalur las ... 183
Gambar 5.18: Penggunaan logam pendingin ... 183
Gambar 5.19: Perbaikan distorsi dengan pemanasan 184
Gambar 6.1: Penyalaan busur .. 203
Gambar 6.2: Permulaan pengelasan ... 203
Gambar 6.3: Pelelehan ... 204
Gambar 6.4: Mematikan busur ... 204
Gambar 6.5: Pengisian kawah las ... 205
Gambar 6.6: Mematikan busur ... 206
Gambar 6.7: Pemeriksaan las ... 206
Gambar 7.1: Sambungan Tumpul 1G dan 2G .. 223
Gambar 7.2: Persiapan permukaan logam pada pengelasan tumpul posisi datar 224
Gambar 7.3: Persiapan awal pengelasan tumpul kampuh V posisi datar dengan penahan belakang .. 224
Gambar 7.4: Pemberian las ikat ... 225
Gambar 7.5: Penyalaan busur ... 226
Gambar 7.6: Permulaan pengelasan ... 226
Gambar 7.7: Pengisian kawah las ... 227
Gambar 7.8: Mematikan busur ... 227
Gambar 8.1: Sambungan sudut 1F dan 2F .. 243
Gambar 8.2: Persiapan permukaan logam pada pengelasan tumpul posisi datar 244
Gambar 8.3: Persiapan awal pengelasan tumpul kampuh V posisi datar dengan penahan belakang .. 244
Gambar 8.4: Pemberian las ikat ... 245
Gambar 8.5: Penyalaan busur ... 246
Gambar 8.6: Permulaan pengelasan ... 246
Gambar 8.7: Pengisian kawah las ... 247
Gambar 8.8: Mematikan busur ... 247
Gambar 9.1: Cacat overlap ... 265
Gambar 9.2: Cacat excessive .. 266
Gambar 9.3: Cacat underfill .. 266
Gambar 9.4: Cacat undercut .. 266
Gambar 9.5: Cacat porosity .. 267
Gambar 9.6: Cacat incomplete fusion ... 267
DAFTAR TABEL
Tabel 2.1: Tipe dan Sumber Asap Las Serta Pengaruhnya Terhadap Kesehatan......................73
Tabel 2.2: Jenis-jenis alat pelindung diri (APD)...75
Tabel 4.1: Bahan elektroda berdasarkan DIN 32528 ...124
Tabel 4.2: Penggunaan elektroda tungsten untuk mengelas baja karbon128
Tabel 4.3: Penggunaan Elektroda pada Pengelasan DC..130
Tabel 4.4: Penggunaan Elektroda Tungsten untuk Pengelasan AC130
Tabel 4.5: Gas pelindung untuk berbagai logam las ..135
Tabel 5.1: Macam-macam Sambungan Las ...160
Tabel 5.2: Simbol las kampuh ...168
Tabel 5.3: Simbol las tambahan ...168
Tabel 5.4: Penerapan Simbol las ...172
BAB II
PENDAHULUAN

A. Latar Belakang

Modul ini disiapkan untuk memfasilitasi guru dan tenaga kependidikan paket keahlian Teknik Fabrikasi Logam dalam menguasai salah satu kompetensi professional, yaitu mengelas dengan menggunakan las TIG (Tungsten Inert Gas) atau GTAW (Gas Tungsten Arc Welding). Uraian materi yang dipaparkan dalam modul ini diarahkan pada upaya untuk membantu guru dan tenaga kependidikan dalam menguasai proses pengelasan dengan proses las TIG untuk posisi di bawah tangan dan mendatar/horisontal pada pelat dengan material baja karbon, stainless steel, dan/atau allumunium. Modul yang disusun disiapkan untuk 10 kegiatan pembelajaran yang terdiri atas 1 (satu) kegiatan pembelajaran pedagogik, dan 9 (sembilan) kegiatan pembelajaran professional. Uraian materi bidang pedagogik mencakup uraian tentang prinsip-prinsip berkomunikasi secara efektif, empatik, dan santun dengan peserta didik. Adapun uraian materi bidang professional mencakup uraian tentang Kesehatan dan Keselamatan Kerja (K3) dalam bidang pengelasan TIG/GTAW; penyiapan konstruksi las; peralatan las GTAW; elektroda las, gas pelindung; proses pengelasan pada posisi 1F, 2F, 1G, dan 2G; dan pemeriksaan dan pengujian hasil las.

Penulisan modul ini dilakukan dalam upaya penyediaan sumber belajar untuk pelaksanaan Diklat Pengembangan Keprofesian Berkelanjutan (PKB). Hal tersebut didasarkan pada pemikiran bahwa modul (modul diklat) merupakan salah satu faktor penunjang dalam kelancaran pelaksanaannya. Diklat PKB merupakan pengembangan kompetensi guru dan tenaga kependidikan yang dilaksanakan sesuai dengan kebutuhan, bertahap, dan berkelanjutan untuk meningkatkan profesionalitasnya. Pengembangan keprofesian berkelanjutan adalah suatu kegiatan bagi guru dan tenaga kependidikan untuk memelihara dan meningkatkan kompetensi guru dan tenaga kependidikan secara keseluruhan, berurutan dan terencana, mencakup bidang-bidang yang berkaitan dengan profesiya didasarkan pada kebutuhan individu guru dan tenaga kependidikan...

Kegiatan diklat dalam PKB dibagi dalam 4 (empat) jenjang diklat yaitu: (1) Diklat jenjang dasar yang terdiri atas 5 jenjang diklat (grade), yaitu jenjang 1-5; (2) diklat jenjang lanjut yang terdiri atas 2 jenjang diklat, yaitu jenjang 6 dan 7; (3) diklat jenjang menengah yang terdiri atas 2 jenjang diklat, yaitu jenjang 8 dan 9; dan (4) diklat jenjang tinggi hanya terdiri atas 1 jenjang diklat, yaitu jenjang 10. Terkait dengan jenjang diklat tersebut, modul yang disusun ini disiapkan sebagai bahan ajar pada pelaksanaan diklat PKB jenjang lanjut, khususnya jenjang diklat (grade) 7.

B. Tujuan

Secara umum, tujuan dari penulisan modul ini adalah untuk memfasilitasi peserta diklat PKB dalam meningkatkan dan mengembangkan keprofesionalannya dalam bidang pengelasan dengan menggunakan proses las TIG (Tungsten Inert Gas) atau Gas Tungsten Arcus Welding (GTAW). Oleh karena itu, setelah mempelajari seluruh isi modul ini peserta diklat diharapkan mampu melakukan proses pengelasan dengan menggunakan TIG/GTAW pada posisi di bawah tangan dan posisi mendatar/horisontal pada pelat dengan material baja karbon, stainless stee, dan/atau allumunium.

Untuk mendukung pencapaian tujuan tersebut, maka setelah menyelesaikan kegiatan pembelajaran modul ini, peserta diklat dituntut untuk memiliki kemampuan dalam hal:
1. Mengidentifikasi dan menerapkan Kesehatan dan Keselamatan Kerja (K3) bidang pengelasan di tempat kerja.
3. Menyiapkan bahan las sesuai dengan jenis pekerjaan yang dituntut dalam gambar kerja.
4. Mengeset peralatan las TIG/GTAW.
5. Memilih elektroda dan gas pelindung sesuai jenis pekerjaan.
7. Memeriksa dan menguji hasil las

C. Peta Kompetensi

D. Ruang Lingkup

Secara garis besar, modul ini terdiri atas dua kategori materi, yaitu modul untuk kategori materi pedagogik, dan modul untuk kategori materi professional. Dalam penyajiannya, isi modul ini disiapkan untuk 9 (sembilan) kegiatan pembelajaran. Kegiatan pembelajaran pertama, adalah kegiatan pembelajaran yang berkaitan dengan materi pedagogik, sedangkan kegiatan pembelajaran kedua dan seterusnya merupakan kegiatan pembelajaran yang berkaitan dengan materi professional.

Materi yang dipaparkan dalam modul ini, khususnya untuk materi profesional meliputi:
1. Kegiatan pembelajaran 2 (KP-2) berisi paparan materi tentang Kesehatan dan Keselamatan Kerja pada Bidang Las TIG/GTAW yang mencakup uraian tentang
gangguan kesehatan dan penyebab kecelakaan kerja, dan Alat Perlindungan Diri (APD) dalam pekerjaan las TIG/ GTAW berikut kegunannya.
2. Kegiatan pembelajaran 3 (KP-3) berisi paparan tentang Peralatan Las TIG/GTAW yang mencakup uraian tentang rangkaian Mesin Las TIG/GTAW, Torch, dan Regulator Gas.
3. Kegiatan pembelajaran 4 (KP-4) berisi paparan atau uraian tentang Elektroda Tungsten, Bahan Tambah (Filler Rod) dan Gas Pelindung pada Proses Las TIG/GTAW
4. Kegiatan pembelajaran 5 (KP-5) berisi paparan tentang Persiapan Pengelasan yang mencakup uraian tentang posisi pengelasan; sambungan las; simbol las; dan tindakan pencegahan dan perbaikan distorsi.
5. Kegiatan pembelajaran 6 (KP-6) berisi paparan tentang praktik pembuatan rigi-rigi las dengan las TIG/GTAW yang memuat uraian tentang pembuatan rigi-rigi las tanpa bahan tambah dan pembuatan rigi-rigi las dengan bahan tambah menggunakan proses las TIG/GTAW.
6. Kegiatan pembelajaran 7 (KP-7) berisi paparan tentang praktik pembuatan sambungan tumpul dengan las TIG/GTAW yang memuat uraian tentang pembuatan Sambungan Tumpul (Butt Joint) 1G dan 2G TIG/GTAW pada Pelat Baja Lunak dan/ atau Stainless Steel.
7. Kegiatan pembelajaran 8 (KP-8) berisi paparan tentang praktik pembuatan sambungan sudut dengan las TIG/GTAW yang memuat uraian tentang pembuatan Sambungan Sudut (Fillet Joint) 1F dan 2F TIG/GTAW pada Pelat Baja Lunak dan/ atau Stainless Steel.
8. Kegiatan pembelajaran 9 (KP-9) berisi paparan tentang pemeriksaan hasil las yang memuat uraian tentang inspeksi pengelasan dan pengujian hasil pengelasan.

E. Saran Cara Penggunaan Modul

1. Petunjuk Umum:
a. Modul ini terdiri dari lembar petunjuk, lembar kegiatan, lembar kerja, dan lembar evaluasi.
b. Pembelajaran bersifat individual (belajar mandiri) dengan panduan modul. Apabila mendapat kesulitan hendaknya meminta penjelasan pembimbing.
c. Tutor berperan sebagai fasilitator, administrator, pembimbing, partisipan, dan supervisor.
d. Pembelajaran diarahkan pada penguasaan kompetensi secara tuntas (mastery learning).

2. Petunjuk Pelaksanaan Pembelajaran:
 a. Sebelum melakukan kegiatan lebih lanjut, hendaknya dibaca dulu petunjuk yang ada.
 b. Bahan pelajaran dibaca pada lembar informasi.
 c. Untuk membantu proses pemahaman materi, hendaknya anda melakukan aktivitas pembelajaran seperti yang disarankan dalam modul ini.
 d. Apabila telah difahami, lanjutkan dengan latihan pada lembar kerja.
 e. Jika merasa sudah menguasai, lanjutkan dengan kegiatan evaluasi.
BAB II
KEGIATAN PEMBELAJARAN

KEGIATAN PEMBELAJARAN 1 : TEKNIK KOMUNIKASI EFEKTIF DALAM PEMBELAJARAN

A. Tujuan

Setelah mempelajari materi ajar dan melakukan latihan serta diskusi, peserta mampu:

1. Mendeskripsikan prinsip dan teknik komunikasi efektif dalam suasana pembelajaran yang menyenangkan dengan baik dan benar;
2. Mempraktikkan teknik komunikasi efektif dalam pembelajaran di kelas secara santun dan empatik;
3. Membangun komunikasi dengan siswa dalam konteks materi ajar secara efektif.

B. Indikator Pencapaian Kompetensi

1. Komunikasi yang efektif, empatik, dan santun dilakukan untuk penyiapan kondisi psikologis peserta didik, agar ambil bagian dalam permainan melalui bujukan dan contoh sesuai dengan mata pelajaran yang diampu.
2. Komunikasi yang efektif, empatik, dan santun dilakukan untuk mengajak peserta didik, agar ambil bagian dalam kegiatan pembelajaran sesuai dengan mata pelajaran yang diampu.
3. Komunikasi yang efektif, empatik, dan santun dilakukan agar peserta didik merespon ajakan guru dalam kegiatan pembelajaran sesuai dengan mata pelajaran yang diampu.
4. Komunikasi oleh guru yang efektif, empatik, dan santun dilakukan untuk merespon peserta didik secara lengkap dan relevan sesuai dengan pertanyaan dan perilaku siswa.
C. Uraian Materi

Bahan Bacaan 1: Pengantar Komunikasi

Salah satu tuntutan kemampuan guru yang tersirat dalam standar kompetensi guru yaitu berkaitan dengan kemampuan guru untuk mengkomunikasi materi yang akan diajarkan kepada siswa. Sesuai Permendiknas Nomor 16 Tahun 2007 tentang Standar Kualifikasi Akademik dan Kompetensi Guru disebutkan dalam salah satu kompetensi yaitu kompetensi sosial, disyaratkan adanya kemampuan guru untuk berkomunikasi dan berinteraksi secara efektif dan efisien dengan siswa, sesama guru, kepala sekolah, orang tua/wali siswa dan masyarakat sekitar.

Oleh karena itu, penguasaan kemampuan berkomunikasi merupakan hal yang tidak dapat dilakukan oleh guru.

Mengapa komunikasi begitu penting?
Kualitas sebuah pembelajaran sangat dipengaruhi efektif tidaknya suatu komunikasi yang berlangsung di dalamnya. Komunikasi dapat dikatakan efektif dalam pembelajaran merupakan proses transformasi pesan berupa ilmu pengetahuan dan teknologi dari pendidik kepada peserta didik, dimana peserta didik mampu memahami maksud pesan sesuai dengan tujuan yang telah ditentukan, sehingga akan berdampak pada bertambahnya wawasan/pengetahuan/keterampilan pada peserta melalui interaksi melalui komunikasi yang produktif antara guru dengan peserta didik, sehingga menghasilkan perubahan perilaku dalam diri siswa secara positif. Guru memiliki peranan paling penting terhadap kelangsungan komunikasi secara efektif dalam suatu pembelajaran, sehingga sebagai pendidik, guru dituntut memiliki kemampuan berkomunikasi yang baik agar menghasilkan proses pembelajaran yang efektif.

Kegiatan pembelajaran merupakan proses transformasi pesan edukatif berupa materi belajar dari sumber belajar kepada pembelajar. Dalam pembelajaran terjadi proses komunikasi untuk menyampaikan pesan dari pendidik kepada peserta didik dengan tujuan agar pesan dapat diterima dengan baik dan berpengaruh terhadap pemahaman serta perubahan tingkah laku. Dengan demikian keberhasilan kegiatan pembelajaran sangat tergantung kepada efektifitas proses komunikasi yang terjadi dalam pembelajaran tersebut. Berikut beberapa pendapat tentang definisi atau pengertian komunikasi, sebagai berikut:

- **Theodore Herbert:**
 Komunikasi merupakan proses yang di dalamnya menunjukkan arti pengetahuan dipindahkan dari seseorang kepada orang lain, biasanya dengan maksud mencapai beberapa tujuan khusus.

- **Evertt M. Rogers:**
 Komunikasi sebagai proses yang di dalamnya terdapat suatu gagasan yang dikirimkan dari sumber kepada penerima dengan tujuan untuk merubah perilakunya.

- **Wilbur Schramm:**
 Komunikasi merupakan tindakan melaksanakan kontak antara pengirim dan penerima, dengan bantuan pesan; pengirim dan penerima memiliki beberapa
pengalaman bersama yang memberi arti pada pesan dan simbol yang dikirim oleh pengirim, dan diterima serta ditafsirkan oleh penerima. (Suranto:2005)

- **Concise Oxford Dictionary**
 Tindakan menyampaikan, terutama berita, atau ilmu dan praktek transmisi informasi. Definisi ini jelas menunjukkan hubungan antara pengajaran dan guru komunikasi terus-menerus menanamkan pengetahuan baru, atau transmisi informasi.

Bahan Bacaan 2: Proses Terjadinya Komunikasi
Komunikasi yang efektif terjadi, apabila ada transmisi pengertian antara pengirim dan penerima informasi. Transmisi pengertian termaksud terjadi, apabila digunakan simbol-simbol yang sama-sama dimengerti, baik dalam bentuk verbal maupun non verbal.

<table>
<thead>
<tr>
<th>Gambar 1.2</th>
<th>Model Komunikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENGIRI => Encoding</td>
<td>PESAN MEDIA Encoding</td>
</tr>
<tr>
<td>UMPAN BALIK</td>
<td>RESPON</td>
</tr>
<tr>
<td>PENERIMA</td>
<td>GANGGUAN</td>
</tr>
</tbody>
</table>
Bila dicermati, berdasarkan diagram model komunikasi tersebut, terdapat beberapa unsur penting, sebagai berikut:

1. **Pengirim (Sender)**: Pengirim/sumber pesan merupakan pihak atau orang yang mempunyai ide, keinginan, kehendak, pemikiran, informasi, tujuan, dan sebagainya untuk mengkomunikasikannya kepada pihak lain.
Sender mencoba untuk memilih tipe pesan dan saluran yang akan digunakan yang
dinilai paling efektif. Sebelum terjadinya penyaluran informasi sender mensandikan (encoding) pesannya baik verbal maupun non verbal (pesan non verbal dimaksudkan
berkomunikasi secara lisan ataupun tulisan, melainkan dengan gesture). Terdapat beberapa prinsip yang perlu dipertimbangkan untuk
meningkatkan proses encoding, yakni: relevansi, kesederhanaan, pengorganisasian, pengulangan, focus.

2. Penerima Pesan (Receiver)\(\rightarrow\) yaitu orang yang menerima dan menginterpretasi
pesan atau informasi dari pengirim pesan.

3. Message (Pesan)\(\rightarrow\) merupakan ide-ide, fakta-fakta, atau problem yang dimaksud
oleh sender untuk dikomunikasikan kepada receiver. Pesan merupakan harapan
pihak yang memberi pesan (source) kepada penerima pesan (receiver) melalui
proses encoding.

Suatu pesan yang dikirim dengan pesan yang diterima tidak selalu sama. Proses
encoding dan decoding bervariasi antara satu orang dengan orang lain. Hal itu
dipengaruhi oleh faktor kecakapan dalam berkomunikasi, sikap, dan
pengalamannya, maupun kematangan mental kedua belah pihak, serta perbedaan
latar belakang dan pandangannya.

4. Channel (Saluran)\(\rightarrow\) merupakan sarana atau media pembawa pesan. Dalam hal ini
berupa telepon, pertemuan kelompok, memo, system penghargaan, pernyataan
kebijaksanaan, jadwal dan sebagainya, yang dapat melakukan transmisi
(penyampaian) ide anda.

5. Feedback (Balikan)\(\rightarrow\) komunikasi yang efektif akan mengikuti jalur dua arah, maka
balikan dari receiver kepada sender adalah penting, sebagai bentuk respon atas
pesan yang disampaikan oleh sender kepada receiver. Pentingnya balikan, adalah
karena asumsi bahwa tidak semua yang dikatakan atau ditulis pasti dapat dipahami
oleh receiver. merupakan informasi yang kembali pada pemberi pesan, yang
memberikan pertanda tentang penerimaan pesan yang telah diberikan.

6. Perspesi (Perception)\(\rightarrow\) persepsi terdapat pada kedua belah pihak (pengirim dan
penerima pesan) Jadi persepsi pada diri setiap orang pada dasarnya dipengaruhi
oleh obyek yang dilihat, cara mengorganisasikan obyek tersebut ke dalam memori, dan arti yang dapat ditangkan dari obyek tersebut.

Permainan:

Pilih salah satu situasi berikut yang paling anda senangi atau sering anda lakukan pengalaman anda dalam berkomunikasi

1. belanja suatu barang,
2. pesan makanan melalui telepon delivery service,
3. memberikan perintah kepada siswa
4. menghadiri suatu rapat.

Kemudian isilah unsur-unsur berikut sesuai situasi yang anda pilih (waktu 5 menit):
Pengirim :

- Pesan :
- Penerima :
- Media :
- Umpan Balik :
- Gangguan :

Bahan Bacaan 3: Teknik Mengatasi Hambatan Komunikasi

Agar dalam berinteraksi dengan orang lain melalui komunikasi efektif, maka perlu adanya penajaman pada aspek kecakapan (menyampaikan dan menerima informasi), menyadari factor penyebab kegagalan komunikasi (Abi Sujak, 1990:105-106).

1. Tingkatkan kejelasan pesan

Perkembangan teknologi computer dan informatika yang sedemikian pesat, mempermudah setiap orang untuk menyajikan pesan secara jelas.
2. Pengaturan arus informasi
Informasi yang diterima secara bersamaan/simultan perlu dikelola berdasarkan tingkat kepentingannya dan urgensinya.

3. Mendorong timbulnya balikan (feedback)
Memastikan bahwa pesan yang telah disampaikan mendapatkan respon sesuai dengan yang dimaksud sangat penting guna memastikan tugas yang didelegasikan atau ditugaskan kepada bawahan atau anggota kelompok sesuai dengan sasaran dan tujuan yang ingin dicapai/disepakati bersama.

4. Menggunakan bahasa yang sederhana
Banyak pimpinan/atasan atau individu tertentu yang menggunakan jargon-jargon dalam proses organisasi yang sukar dipahami.

5. Mendengarkan secara efektif
Pendengar yang baik akan menghargai setiap gagasan atau informasi yang dikemukakan oleh lawan bicara. Pendengar yang baik lebih menekankan pada aspek apa yang dibicarakan bukan siapa yang berbicara atau melihat tata bahasa, serta memperhatikan secara seksama dan memberikan respon secara positif. Memang aktivitas mendengarkan akan lebih membosankan dibanding dengan berbicara.

6. Memahami emosi
Faktor emosi menjadi penyebab terjadinya distorsi pada isi pesan. Suatu pesan akan dapat diterima dengan antusias oleh penerima bila disampaikan dengan rasa akrab, tanpa praduga negatif.

7. Mengembangkan rasa percaya diri
Menanamkan kepercayaan akan mewarnai kejujuran dan keterbukaan dalam penyampaian informasi oleh sender kepada receiver.

Bahasa Tubuh sebagai Bagian Komunikasi
mungkin bisa membaca sikap seseorang melalui perilakunya. Inilah hal penting yang perlu dipahami oleh pelaku bisnis dalam memahami dan mempraktekan bahasa tubuh. Penelitian tentang bahasa tubuh menunjukkan bahwa dalam presentasi-presentasi tatap muka, kuatnya pengaruh pesan anda terhadap para pendengar adalah sebagai berikut (Hinkley:2004:101, terjemahan)

<table>
<thead>
<tr>
<th>Komunikasi</th>
<th>Persentase Pengaruh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkataan</td>
<td>7,0% - 10% dari total pengaruh</td>
</tr>
<tr>
<td>Vokal</td>
<td>21% - 30% dari total pengaruh</td>
</tr>
<tr>
<td>Bahasa tubuh</td>
<td>60% - 80% dari total pengaruh</td>
</tr>
</tbody>
</table>

Hasil penelitian tersebut menunjukkan bahwa cara Anda memandang, gerak isyarat, tersenyum, berpakaian dan gerak memiliki pengaruh besar terhadap sikap orang lain kepada Anda. Cara anda berbicara lebih penting tiga kali lipat daripada perkataan yang Anda gunakan.Berdasarkan Hinkley (2004) terhadap tiga kaidah membaca tanda:

1. **Membaca Kluster**
 Gerak isyarat dapat menjadi kalimat yang disebut dengan kluster. Oleh karenanya, jangan menginterpretasi satu gerak isyarat secara terpisah.

2. **Mempertimbangkan Konteks**
 Kluster gerak isyarat harus dievaluasi dimana terjadinya.

3. **Memahami perbedaan Kultural**
 Gerak isyarat yang berarti satu hal di satu tempat dan budaya atau Negara berbeda.

Bahan Bacaan 4 : Komunikasi Efektif

a. **Materi Pembelajaran**

 1) **Komunikasi Efektif**

 Untuk Apapun, Anda Harus Berbicara. Apapun jenis pekerjaan yang Anda lakukan, Anda selalu akan melakukan tiga hal berikut ini:

 - Memimpin;
 - Menjual;
 - Mempresentasikan.

 Dalam pelaksanaannya atau faktanya, Anda bahkan mungkin melakukan ketiganya sekaligus.
Jika Anda sedang memimpin, maka Anda pasti sedang “menjual” sesuatu agar diikuti oleh orang-orang yang Anda pimpin. Dan dalam melakukannya, Anda akan menyajikan atau mempresentasikan berbagai hal yang relevan agar orang yang Anda pimpin mau mengikuti keinginan Anda.

Jika Anda sedang “menjual” sesuatu, artinya Anda sedang mengupayakan posisi memimpin, agar orang lain mau mengambil keputusan sesuai dengan yang Anda inginkan sebagai pihak yang menjual. Dan sekali lagi, Anda pasti mempresentasikan berbagai hal yang relevan.

Jika Anda sedang berpresentasi, maka Anda bisa dipastikan sedang menjual sesuatu. Dan karena Anda sedang berusaha menjual sesuatu, maka Anda pasti berupaya untuk memimpin audience, agar mendengarkan Anda, agar menyimak presentasi Anda, agar memahami maksud dan tujuan Anda, dan agar teryakinkan sesuai tujuan presentasi Anda.

Dalam melakukan semua aktivitas di atas, media paling umum yang akan Anda gunakan adalah komunikasi verbal alias berbicara. Muara dari semua aktivitas itu, atau hasil akhir dari semua aktivitas itu, akan sangat ditentukan oleh kualitas bicara Anda. Sebelum sampai ke persoalan teknis seperti struktur bicara, intonasi, gaya bahasa atau bahkan pilihan kata dan kalimat, aspek mendasar dari kualitas bicara Anda adalah tingkat percaya diri Anda saat melakukannya.

Kemampuan berkomunikasi merupakan keterampilan yang sangat penting dalam hidup kita. Kita menghabiskan sebagian besar waktu yang ada disaat kita sadar dan bangun untuk berkomunikasi. Sama halnya dengan bernafas, komunikasi bisa dianggap sebagai hal yang otomatis terjadi begitu saja. Sehingga kita tidak memiliki kesadaran untuk melakukannya dengan efektif. Kita pada umumnya tidak pernah mempelajari bagaimana menulis dengan efektif, bagaimana membaca dengan cepat, bagaimana berbicara dengan efektif, apalagi bagaimana menjadi pendengar yang baik.

Komunikasi berasal dari perkataan “Communicare” yaitu yang di dalam bahasa latin mempunyai arti “berpartisipasi atau memberitahukan”, sedangkan perkataan “Comunis” berarti milik bersama atauupun “berlaku dimana-mana” atau juga berarti sama, sama di sini maksudnya sama makna. Jadi jika dua orang melakukan komunikasi misalnya dalam bentuk percakapan maka komunikasi akan berjalan atau berlangsung dengan baik selama ada kesamaan makna mengenai apa yang dipercakapkan.

Collen Mc. Kenna mendefinisikan komunikasi sebagai proses pengiriman pesan kepada penerima dengan saling pengertian. Proses ini melibatkan beberapa komponen, yaitu pengirim pesan (sender), pesan yang dikirimkan (message), bagaimana pesan tersebut dikirimkan (delivery channel atau media), penerima pesan (receiver), dan unpan balik (feedback) yang diharapkan.

Kemampuan mengembangkan komunikasi yang efektif merupakan salah satu keterampilan yang amat diperlukan untuk pengembangan diri kita baik sebagai personal maupun professional seperti guru, kepala sekolah, pengawas dll, atau sebagai pemimpin maupun sebagai anggota sebuah tim. Paling tidak kita harus menguasai empat jenis keterampilan dasar dalam komunikasi, yaitu menulis, membaca (bahasa tulisan), mendengar, dan berbicara (bahasa lisan). Perhatikan, hampir setiap saat kita menghabiskan waktu untuk mengerjakan setidaknya salah satu dari keempat hal itu. Oleh karena itu, kemampuan untuk menguasai keterampilan dasar komunikasi dengan baik mutlak kita perlukan demi efektifitas dan keberhasilan kita.
Menurut Covey, unsur terpenting pada komunikasi bukan sekedar pada apa yang kita tulis atau kita katakan, tetapi lebih pada karakter kita dan bagaimana kita menyampaikan pesan itu. Jika pesan yang kita sampaikan di bangun dari hubungan manusia yang dangkal, bukan dari diri kita yang paling dalam, orang lain akan melihat dan membaca sikap kita. Jadi syarat utama dalam komunikasi efektif adalah karakter yang kokoh yang dibangun dari fondasi integritas pribadi yang kuat.

Dalam hubungan komunikasi yang efektif, kepercayaan merupakan dasar terciptanya teamwork. Kepercayaan ini hanya bisa muncul kalau kita mempunyai integritas, yang mencakup hal hal yang lebih dari sekedar kejujuran. Kalau kejujuran mengatakan kebenaran atau menyesuaikan kata kata kita dengan realitas, integritas menyesuaikan realitas dengan kata kata kita. Integritas bersifat aktif, sedangkan kejujuran bersifat pasif.

Ada lima hukum komunikasi efektif, yang oleh Aribowo Prijosaksono dalam bukunya Make Yourself A Leader dirangkum dalam satu kata yang mencerminkan esensi dari komunikasi, yaitu REACH, yang berarti merengkuh atau meraih. Pada dasarnya komunikasi adalah upaya kita untuk meraih perhatian, cinta kasih, minat, kepedulian, simpati, tanggapan, maupun respon positif dari orang lain.

Kelima hukum komunikasi efektif tersebut adalah:

a) **Respect**
b) **Empathy**
c) **Audible**
d) **Clarity**
e) **Humble**

Jika Anda/kita membangun komunikasi berdasarkan pada lima hukum pokok komunikasi yang efektif ini, Anda dapat menjadi seorang komunikator yang handal yang dapat membangun jaringan hubungan dengan orang lain dengan penuh penghargaan (respect), karena hal inilah yang dapat membangun hubungan jangka panjang yang saling menguntungkan dan saling menguatkan. Yang pada akhirnya dapat Anda jadikan sebagai sarana efektif untuk meraih kesuksesan.

2) **Mendengarkan Orang Lain (Listening)**
Menjadi pendengar yang baik merupakan salah satu syarat mutlak bagi seorang pengawas untuk bisa memiliki pengaruh terhadap kepala sekolah, guru, dan staf sekolah lainnya. Dengan memiliki pengaruh, seorang pengawas memiliki bekal yang lebih baik untuk memberdayakan para perangkat sekolah tersebut sehingga tujuan yang diharapkan dapat tercapai.

Apa yang ada pada tubuh kita sebenarnya sudah menggambarkan bagaimana seharusnya kita menggunakankannya secara bijak agar bisa memberikan manfaat bagi diri sendiri maupun orang lain. Sebagai contoh, kita memiliki satu mulut dan dua telinga, artinya kita dituntut untuk lebih banyak mendengar daripada berbicara. Sayangnya, kita tidak terbiasa untuk terampil menggunakan telinga kita untuk mendengar lebih banyak daripada berbicara. Padahal, dengan banyak mendengar, akan makin banyak pula informasi yang kita dapatkan. Dengan banyak informasi, kita pun akan memiliki bekal yang lebih baik lagi guna mempengaruhi orang lain. Seberapa jauhkah keterampilan mendengar anda selama ini? Coba anda pahami hal-hal di bawah ini.

a) Mengapa Kita Harus Mendengar

Mendengar tidak hanya merupakan perilaku yang sopan dan memberikan nilai yang berharga bagi si pendengar. Kita juga bisa mendapatkan banyak hal dari mendengar. Banyak alasan mengapa kita harus mau mendengar yaitu:

- **Membangun kepercayaan.**
 Orang-orang yang mau mendengarkan ternyata lebih dipercaya daripada orang-orang yang banyak bicara dan mengobrol. Kepercayaan merupakan pelumas bagi terjadinya perubahan pemikiran, dan mendengarkan adalah kuncinya.

- **Kredibilitas.**
 Jika kita mau sungguh-sungguh mendengar terhadap orang lain, maka kredibilitas kita pada mereka akan meningkat. Mereka akan mempersepsikan kita sebagai orang yang memiliki kapabilitas dan akan bisa bekerja bersama mereka, bukan menyerang mereka. Para pemimpin, pelatih, fasilitator yang hebat adalah orang-orang yang mampu menjadi
pendengar yang baik, dan sebaliknya, para pendengar yang baik pun memiliki potensi untuk bisa menjadi pemimpin yang besar.

- **Dukungan**
 Pada umumnya orang mengakui bahwa mereka merasa memperoleh dukungan bila didengar, khususnya saat mereka merasa marah atau gelisah. Dengan didengar, mereka merasa dihargai dan dipahami. Jadi, jika kita mau mendengar seseorang, sama artinya dengan kita mengirimkan pesan yang menyatakan “Anda penting bagi saya. Saya menghargai anda”.

- **Menjadikan sesuatu terlaksana**
 Sebagai contoh membangun kepercayaan, mendengar juga memungkinkan kita mencapai tujuan, karena orang yang didengar akan mau bekerja sama dengan kita.

- **Informasi**
 Mendengar memberikan kita banyak informasi yang berguna, baik untuk saat ini maupun masa yang akan datang. Dengan memiliki banyak informasi, maka kita akan dapat mengarahkan apa yang dikatakan orang.

- **Pertukaran**
 Jika kita mendengarkan orang lain, maka mereka akan lebih mendengarkan kita. Sesuai dengan prinsip pertukaran, dukungan kita kepada orang lain akan membuat mereka juga mendukung kita sehingga akhirnya kita akan bisa mencapai tujuan.

b) **Kebiasaan Mendengar Yang Buruk**

Mendengar secara buruk sudah menjadi hal yang umum, namun jarang diperhatikan. Menurut Robertson (1994), ada sepuluh kebiasaan mendengar yang buruk yang paling umum dilakukan orang. Kesepuluh kebiasaan tersebut adalah:

- Kurang perhatian pada masalah yang dibicarakan
- Perhatian dipusatkan pada orangnya, bukan pada isi pembicaraan.
- Melakukan interupsi.
Memusatkan perhatian pada detail dan mengabaikan gambaran umum.

Memaksakan mencocokkan ide pembicara kedalam model mental sendiri.

Menunjukkan bahasa tubuh yang menandakan ketidaktertarikan

Menciptakan atau membiarkan terjadinya kebingungan

Mengabaikan apa yang tidak dipahami

Membiarkan emosi menghalangi pemahaman materi yang dibicarakan

Mengkhayal, sehingga tidak bisa mendengar pembicaraan secara utuh.

c) Kebiasaan Mendengar Yang Baik

Meskipun kebiasaan mendengar yang baik sudah merupakan hal umum, namun ada beberapa pola kebiasaan mendengar yang bisa dilakukan untuk membantu orang lain, termasuk pada akhirnya membantu diri sendiri. Kebiasaan mendengar yang baik tersebut adalah:

- **Memberikan perhatian penuh.**
 Berikan perhatian terhadap orang yang sedang berbicara. Berikan mereka perhatian penuh, tidak hanya dengan telinga, tapi dengan seluruh badan; menghadaplah pada orang yang sedang berbicara dan tataplah. Lakukan hal ini dengan sepenuh hati, bukan hanya secara fisik. Jika hati kita benar-benar terarah untuk memperhatikan, secara otomatis tubuh pun akan mengikuti.

- **Membantu orang lain untuk bicara.**
 Kadang-kadang orang yang berbicara mengalami kesulitan mengemukakan apa yang ingin ia bicarakan. Mungkin mereka bukan pembicara yang baik, atau memang sedang mencari cara untuk menjelaskan sesuatu yang kompleks. Kita bisa membantu mereka dan diri kita sendiri dengan dorongan yang positif (positive encouragement). Jika mereka kurang yakin, doronglah mereka dengan anggukan, senyuman, dan suara yang positif (misalnya ya...ya, hmm). Perlihatkan bahwa kita tertarik pada mereka dan jangan pikirkan bahwa mereka tidak cukup terpelajar/pandai. Jika mereka susah payah dalam mengemukakan suatu konsep, cobalah bantu mereka mengemukakan apa yang mereka maksudkan dengan menggunakan kalimat lain. Mengajukan pertanyaan yang positif merupakan suatu pendekatan
yang bagus, baik untuk menguji pemahaman kita sendiri maupun menunjukkan ketertarikan kita kepada mereka.

- **Memberi orang lain dukungan (support).**
 Mendengar yang baik juga mencakup tindakan yang menunjukkan bahwa kita penuh perhatian kepada orang lain. Sebagai bagian dari mendengar, kita seharusnya berusaha untuk membantu orang lain merasa nyaman dengan diri mereka sendiri. Sikap mendasar untuk memberikan dukungan adalah menghargai dan menerima semua orang, bahkan saat kita tidak setuju dengan apa yang mereka katakan atau cara mereka mengatakan sesuatu. Jika kita tidak setuju, maka ketidaksetujuan kita adalah terhadap argumennya, bukan terhadap orangnya. Perlihatkan penerimaan kita atas hak mereka untuk berbeda dengan kita.

- **Mengelola reaksi kita.**
 Hati-hatilah dengan reaksi kita terhadap apa yang orang lain katakan. Mudah saja bagi seseorang yang menjadi pendengar untuk menunjukkan ketidaktertarikannya, menunjukkan bahwa mereka tidak mau mendengarkan kita, atau menunjukkan bahwa mereka lebih tertarik untuk mengkritik kita. Sebelum kita berkomentar dan memberikan respons tentang apa yang orang lain katakan, berhentilah sejenak untuk merenungkan kesimpulan dan prasangka yang ada dalam diri kita. Pikirkan tentang apa yang akan kita katakan dan efek yang mungkin ditimbulkannya. Pertimbangkan apakah hal tersebut yang memang ingin kita capai.

d) **Gaya Mendengar**

- **Gaya Orientasi Orang (People-Oriented)**
 Orang-orang yang *people oriented* menunjukkan perhatian yang kuat pada orang lain dan perasaannya. Mereka tergolong external focus,
mendapatkan energinya dari orang lain dan mendapatkan banyak makna dalam hubungan/relasi, lebih banyak berbicara tentang “kita” daripada “anda” atau “mereka”.

- **Gaya Orientasi Isi (Content-Oriented)**

Orang dengan gaya orientasi isi lebih tertarik dengan apa yang dikatakan daripada siapa yang berkata atau apa yang mereka rasakan. Mereka menilai orang lain berdasarkan pada seberapa kredibel mereka dan akan berusaha menguji keahlian dan keadaan yang sebenarnya dari orang tersebut. Orang tipe ini memusatkan perhatian pada fakta dan bukti dan senang menyelidiki detail. Mereka berhati-hati dalam melakukan asesmen, berusaha mencari tahu hubungan sebab akibat, dan mencari bukti sebelum menerima apa pun sebagai hal yang benar. Orang-orang ini bisa menghadapi masalah bila mereka menolak ide-ide dan harapan-harapan.
orang lain serta menolak informasi karena belum memiliki cukup bukti yang mendukung.

- **Gaya Orientasi Tindakan (Action-Oriented)**
 Pendengar yang berorientasi tindakan memusatkan perhatian pada apa yang akan dilakukan, tindakan apa yang akan terjadi, kapan, dan siapa yang akan melakukannya. Mereka mencari jawaban atas pertanyaan “lalu apa?” dan mencari tahu rencana tindakan. Mereka menyukai penjelasan yang gamblang, ringan, dan jawaban yang didasarkan pada bukti nyata/konkrit.

- **Gaya Orientasi Waktu (Time-Oriented)**
 Orang dengan gaya ini “mempunyai mata yang terus terpaku pada jam”. Mereka mengatur hari-hari mereka kedalam bagian-bagian yang rapi dan mengalokasikan waktunya untuk mendengar, dan akan sangat mempermasalahkan bila sesinya melewati batas waktu.
 Orang tipe ini mengelola waktunya dengan berbicara tentang ketersediaan waktu dan mencari jawaban-jawaban singkat terhadap permasalahan yang ada. Hal ini bisa menjengkelkan orang lain yang memusatkan perhatian pada elemen orang dan ingin bersama-sama selama mungkin.

Bahan Bacaan 5 : Komunikasi Interpersonal

Sejak manusia dilahirkan komunikasi telah menjadi bagian dari kehidupannya. Salah satu bentuk komunikasi yang kita alami pada awal permata kehidupan adalah komunikasi interpersonal. Sebagai contoh adalah tangisan seorang bayi yang baru dilahirkan.
Tangisan tersebut merupakan bentuk komunikasi non-verbal yang memberikan informasi kepada kita bahwa ia telah lahir dengan selamat. Dalam bab ini akan dibahas tipe komunikasi interpersonal, model komunikasi interpersonal, hubungan komunikasi antar manusia, konflik yang terjadi, bagaimana bersikap terbuka atau membuka diri. Dan bagaimana menyampaikan sebuah tegesan tanpa melukai orang lain.

A. Pengertian Komunikasi Interpersonal

Istilah komunikasi interpersonal biasanya dipergunakan pada komunikasi antara dua orang atau lebih, dalam kondisi tatap muka. Untuk mendapatkan memperoleh komunikasi interpersonal yang efektif, perlu kiranya dipahami proses komunikasi interpersonal, metode, komponen pendukung sebuah komunikasi yang efektif. Beragamnya pola kehidupan manusia, cara berpikir, sifat-sifat, dan budayanya, telah menyebabkan beragamnya tipe atau jenis komunikasi interpersonal

1. Definisi

Komunikasi interpersonal berbeda dengan jenis komunikasi yang lain, karena komunikasi interpersonal hanya melibatkan beberapa orang saja. Secara fisik jarak mereka berdekatan; banyak sensor yang dapat dipergunakan, dan umpan balik yang diharapkan dari komunikate dapat diperoleh secara langsung. Secara sederhana komunikasi interpersonal dapat didefinisikan sebagai pertukaran informasi antar manusia secara verbal atau non-verbal dengan tujuan berbagi informasi dan mendapatkan umpan balik.

2. Fungsi Komunikasi Interpersonal

Maksud dan tujuan orang berkomunikasi sebenarnya adalah menyampaikan informasi atau pesan, dan sebaliknya untuk memperoleh informasi. Beberapa fungsi komunikasi interpersonal adalah

a. Untuk Menambah Informasi (Gaining Information);

 Teori penetrasi social mengatakan bahwa seseorang berusaha untuk mendapatkan informasi tentang orang lain. Dengan mengenal seseorang lebih dekat maka kita akan dapat memperoleh informasi lebih banyak tentang orang tersebut, baik secara (1) pasif yaitu dengan mengamati orang
tersebut; secara (2) aktif yaitu dengan bantuan orang lain; secara (3) interaktif yaitu keterbukaan diri orang tersebut.

b. Membangun Sebuah Pengertian (building a context of understanding)
Dalam situasi dan kaitan masalah yang berbeda, sebuah ‘kata’ yang diucapkan dapat memiliki banyak arti atau makna. Dengan menggunakan komunikasi interpersonal kita akan lebih dapat memahami apa yang disampaikan oleh seseorang.
‘Kata’ atau informasi yang diucapkan mengandung ‘isi pesan’ (content messages) yang menunjukan tingkat pengertian sebuah pesan, dan disamping itu mengandung ‘hubungan pesan’ (relationship messages) yang terkait dengan “bagaimana pesan itu diucapkan”. Isi pesan dan hubungan pesan terkirim secara bersamaan, namun masing-masing mempengaruhi arti yang dimaksudkan dalam komunikasi. Komunikasi interpersonal membantu kita untuk dapat saling memahami lebih baik.

c. Membentuk Identitas (establishing identity)
Peran dalam sebuah komunikasi interpersonal akan membentuk identitas diri kita. Termasuk didalamnya wajah atau penampilan kita yang menunjukan citra diri kita. Sebenarnya ‘peran’ dan penampilan seseorang terbentuk karena pergaulan di lingkungan sekeliling kita. Sebagai contoh : seseorang yang menjadi direktur haruslah bertindak dan berperilaku sebagaimana layaknya seorang pimpinan (walaupun sebenarnya ia tidak layak dan tidak mampu menjadi direktur.

d. Memperoleh Kebutuhan Pribadi (interpersonal needs). Seseorang terlibat dalam komunikasi interpersonal, sebenarnya lebih didorong oleh keinginan untuk memekapresikan diri dan mendapatkan penuh kebutuhan individunya.

Berdasarkan pengamalan William Schultz sebagai individu manusia memiliki tiga kebutuhan, yaitu:

PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM

25
Pencantuman Diri (*inclusion*), yaitu kebutuhan untuk membentuk identitas diri bersama dengan orang lain. Sebagai contoh: tredaftar dan menjadi bagian dari sebuah komunitas.

Pengawasan (*control*), yaitu suatu kebutuhan seseorang untuk dapat mempraktikkan kemampuannya memimpin, dan kemudian mendapatkan pengakuan atas kemampuan tersebut. Sebuah kelompok merupakan wadah yang baik untuk mewujudkan kebutuhan ini.

Persahabatan, kesenangan/kenyamanan (*affection*), yaitu kebutuhan untuk mengembangkan hubungan dengan orang lain atau bermasyarakat. Sebuah kelompok atau komunitas.

B. Tipe Pesan Interpersonal

Albert Mehrabain (1972) seorang profesor di bidang komunikasi menyatakan berdasarkan penelitian yang dilakukannya, hanya 7% dari pesan atau informasi terkomunikasikan melalui saluran/cara verbal; 38% melalui *paralanguage* yang umumnya melalui penggunaan suara, sedangkan sebanyak 55% tersampaikan melalui non-verbal. Terdapat dua tipe pesan yaitu pesan verbal dan pesan non-verbal.

1. Pesan Verbal

Untuk melakukan komunikasi verbal diperlukan sebuah “bahasa” (*language*). Secara semantik “bahasa” didefinisikan sebagai sekelompok label yang dipergunakan untuk menyatukan pikira, waktu, dan ruang. Label ini dapat disampaikan dari sari kesatuan (*entity*) ke yang lainnya melalui berbagai sarana termasuk suara, tulisan, dan sebagainya.

Untuk dapat melakukan komunikasi verbal dengan baik, diperlukan penguasaan minimal lima keterampilan, yaitu:

a. **Cara pengenalan pribadi**
 - Dalam perkenalan pendahuluan kita harus berbicara secara jelas dan efektif.
 - Perkenalkan terlebih dahulu orang yang dituakan, dan kemudian perkenalkan yang muda kepada yang dituakan.
• Sebutkan nama para wanita terlebih dahulu sebelum menyebutkan nama-nama para pria.
• Perkenalkan dan sebut nama-nama dari orang yang memiliki posisi atau para pejabat pemerintahan.

b. Cara menangani percakapan melalui Telepon:
• Hindari pertengkaran atau cekcok dengan pelanggan dalam telepon. Mintalah kepada orang yang lebih tinggi posisi atau kedudukannya, yang menangani masalah tersebut.
• Dalam hal percakapan yang berhubungan dengan kantor, sebutkan nama dan posisi anda serta nama kantor di mana anda bekerja dengan sopan.
• Akhiri pembicaraan di telepon dengan ucapan terima kasih.

c. Cara memberikan penjelasan:
• Berikan deskripsi yang jelas untuk menghemat waktu dan menghindari kesalahan lawan bicara.
• Buat langkah-langkah dalam memberi deskripsi, dan pada akhir percakapan jangan lupa untuk menanyakan apakah penjelasan atau deskripsi yang diberikan telah dapat dipahami dengan jelas.

d. Cara menyampaikan pertanyaan
• Diperlukan keterampilan untuk mengajukan pertanyaan yang cerdas, berbobot secara efektif.
• Semakin spesifik pertanyaan yang diajukan, semakin besar peluang untuk mendapatkan informasi yang diharapkan.

e. Cara menyampaikan cerita
• Cara yang paling mudah untuk menyampaikan informasi adalah dengan cara bercerita.
• Sampaikan permasalahan secara umum, jelas, dan yang diperkirakan dapat menambah informasi untuk pendengarnya. Sampaikan kebenaran, jangan membesar-besarkan masalah.
Komunikasi verbal bulanlah satu-satunya sarana untuk melakukan komunikasi. Satu ha yang pasti adalah, bahwa apapun alat yang dipergunakan dalam komunikasi verbal, ia harus berkaitan dengan indera (sense) para pelaku komunikasi.

2. **Pesan Non Verbal**

Komunikasi non verbal adalah berbentuk komunikasi yang dilakukan tanpa mempergunakan bahasa(language). Yang termasuk dalam komunikasi non-verbal adalah ekspresi wajah, tatapan mata, nada suara, gerakan dan sikap tubuh, dan cara memposisikan diri dalam kelompok. Secara sederhana komunikasi non-verbal dapat diumpamakan sebagai pengiriman dan penerimaan pesan dalam berbagai cara, tanpa menggunakan kode-kode verbal atau kata-kata.

Menurut Mark Knapp (1978) penggunaan kode non-verbal dalam berkomunikasi memiliki fungsi untuk : meyakinkan apa yang diucapkan (repetition); diungkapkan dengan kata-kata (substitution); menunjukan jati diri sehingga orang dapat mengenalnya (identity); menambah atau melengkapi ucapan-ucapan yang dirasakan belum sempurna. G.W. Porter membagi komunikasi non-verbal dalam empat katagori

a. **Physical** : katagori komunikasi ini menggunakan bagian tubuh kita antara lain ekspresi wajah, nada suara, gerakan tubuh. Gambar 9 adalah gambar yang direkam setelah terjadinya gempa bumi di Bantul, Yogyakarta. Seorang bocah yang sedang jongkok dengan tatapan menompang dagu. Epresi tubuhnya mengirimkan 'pesan' yang kita pahami bahwa anak tersebut sedang dalam duka, karena sesuatu telah terjadi pada dirinya (dalam hal ini hancurnya rumah tinggalnya akibat gempa bumi di Bantul, Yogyakarta)

Gambar 10 menggambarkan seorang bayi berumur empat bulan dalam pelukan ibunya. Bayi tersebut membelelekkan mata karena pengaruh cahaya lampu kamera. Di lain pihak bibir bundanya mengembangkan senyum bahagia karena ai akan segera memiliki gambar dirinya dengan sang buah hati.
b. **Aesthetic;** Komunikasi yang dapat dilakukan melalui ekspresi yang kreatif dan menarik. Contoh gambar 11 menunjukkan seorang pemain gitar terkenal yang sedang memainkan gitarnya dengan penuh perasaan.

c. **Signs;** Komunikasi kategori mekanik, antara lain penggunaan bendera isyarat pada gambar ‘semaphore’, yang dipergunakan untuk mengirim berita. Setiap posisi bendera menggambarkan symbol tertentu (dalam hal ini huruf dan angka), dan apabila dirangkaikan akan membentuk satu pesan.

C. **Jenis Hubungan Komunikasi Interpersonal**

Dalam sebuah organisasi, sebuah rapat stad, diskusi tentang proyek, review tentang kinerja pegawai dapat dianggap sebagai komunikasi interpersonal. Komunikasi interpersonal tidak lagi bersifat interpersonal apabila terlalu banyak orang yang terlibat di dalamnya.

Komunikasi ini akan berubah sifat menjadi komunikasi kelompok atau komunikasi public. Untuk itulah maka komunikasi interpersonal dapat dipilah-pilah berdasarkan jumlah orang yang terlinat dalam komunikasi tersebut

1. **Komunikasi dengan diri sendiri (Intrapersonal Communication)**

 Komunikasi interpersonal adalah komunikasi yang terjadi dalam diri kita masing-masing. Komunikasi terjadi lebih kepada mendengarkan hati nurani diri kita.

2. **Komunikasi antar manusia (Interpersonal Communication)**

 Komunikasi ini adalah komunikasi yang dilakukan antara dua orang atau lebih dapat dilakukan secara langsung dan umpan balik terhadap pesan dapat langsung diterima pada saat itu juga.

 a. **Sikap Pasif atau non-asertif (passive):**

 Sikap pasif berkaitan dengan ketidak-mampuan atau ketidakmauan seseorang untuk mengemukakan pendapat, pikiran atau perasaannya.
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM

Orang yang pasif cenderung akan melaksanakan sesuatu yang tidak mereka kehendaki berbagai alasan (excuses) daripada menyampaikan apa yang mereka inginkan.

Dalam komunikasi ini pengirim pesan akan menyimpan atau memendam pikiran dan pendiriannya, dan lebih mengutamakan pendapat orang lain.

b. Sikap Tegas (Assertive)
Orang dengan perilaku asirtif akan menyatakan dengan gambling pendirian mereka, apa yang mereka pikir, dan teguh pada keyakinannya, tanpa melukai orang lain.

c. Sikap Agresif (Aggressive)
Agersif berkaitan dengan perilaku seseorang yang reaktif secara berlebihan, mengeritik dan menyalaahkan orang lain. Untuk dapat memperoleh apa yang dikehendakinya orang dengan sifat ini akan menempuh jalan apa saja untuk dapat menguasai lawan komunikasinya, memaksakan kehendaknya, tanpa memerhatikan hak orang lain. Mereka tidak segan-segan melakukan intimidasi, bahkan melakukan perkelahian.

3. Komunikasi Kelompok (Group Communication)
Komunikasi jenis kelompok dilakukan oleh lebih dari dua orang. Kelompok ini dapat berbentuk dalam kelompok besar dan kelompok kecil. Mereka dikatakan ‘kelompok’ karena mereka berada dalam ruang yang sama, pada saat yang bersamaan, da nada satu orang yang berfungsi sebagai komunikator utama. Kadang-kadang apabila jumlah orang dalam kelompok tersebut terlalu besar, diperlukan media untuk membantu kelancaran komunikasi (contoh : Microphone, Proyektor)

Bateman dan Zeithami membedakan komunikasi interpersonal yang dipergunakan dalam perkantoran atau bisnis dalam enam gaya:

a. The Controlling Style:
Berbentuk komunikasi satu-arah yang dipergunakan untuk memberikan perintah atau instruksi pada orang lain. Pemimpin yang mempergunakan gaya ini biasanya tidak menginginkan adanya umpan balik. Mereka
bertendensi lebih mempergunakan kekuasaan agar apa yang diinginkan dapat tercapai.

b. The Egalitarian Style:
Bebentuk komunikasi dua arah yang menyertakan para pelaku komunikasi untuk berbagi informasi. Gaya ini dipergunakan untuk memberikan stimulant pada orang lain agar mau menyatakan pendapat dan pemikirannya, sehingga diperoleh pengertian atau pemahaman yang sama. Pada umumnya dalam berbagai situasi gaya ini akan lebih efektif dibandingkan dengan gaya mengontrol, khususnya bila dibutuhkan adanya kerjasama

c. The Structuring Style:
Pimpinan yang menggunakan gaya ini lebih menonjolkan standard an aturan-aturan yang berlaku di kantor. Ia cenderung memberikan posisi ‘aman’ dengan hanya menjelaskan procedure-prosedur yang harus ditempuh oleh sebuah kelompok dalam melaksanakan tugasnya.

d. The Dynamic Style:
Sebuah gaya yang membutuhkan tenaga dan pikiran untuk memotivasi anak buah agar berani mengambil tindakan atau bertindak, misalnya pada saat kritis. Gaya ini akan efektif apabila anak buah memiliki pengetahuan yang memadai. Namun gaya ini menjadi tidak efektif apabila orang yang ditugaskan tidak memiliki kemampuan untuk melaksanakannya.

e. The Relinquishing Style:
Gaya yang bersifatnya lebih diferensial daripada intruksional. Pimpinan yang menerapkan gaya ini menghagai ide orang lain, dan siap mendelegasikan tanggung jawab pada orang tersebut. Gaya ini akan efektif apabila nak buah memiliki cukup pengetahuan untuk melaksanakannya, berpengalaman dan mau mengambil tanggung jawab.

f. The Withdrawal Style:
Merupakan suatu gaya yang mengarah pada kurangnya komunikasi. Pimpinan yang menggunakan gaya ini berusaha untuk menghindari
keterlibatannya dan kemungkinan memberikan indikasi bahwa ia tidak tertarik atau tidak mau berpartisipasi dalam diskusi

4. Komunikasi Massa (*Mass Communication*)

Komunikasi ini berbeda dengan komunikasi kelompok karena pengirim pesan yang berfungsi sebagai komunikator utama, secara fisik tidak berda dalam satu ruang yang sama atau tidak berdekatan secara fisik dengan penerima pesan. Jumlah penerima atau pengirim pesan tidaklah penting, tetapi sampainya pesan ke sasaran merupakan hal yang lebih penting. Karena secara fisik mereka tidak saling melihat, maka adu argumentasi atau pendapat secara langsung tidak akan terjadi.

D. Model Hubungan Komunikasi Interpersonal

Knapp mengembangkan 2 model’ Eskalasi Hubungan’ (Knapp *Relationship Escalation Model*) dan model ‘Pemutusan Hubungan. (Knapp’s *Relationship Termination Model*);

1. Model “Eskalasi”:

Dalam model ini proses hubungan terbagi dalam 5 tahapan yang bertingkat, yaitu:

a. Tahap Perkenalan (*initiation*)

Hanya membutuhkan waktu pendek saja, antara 5-10 menit pada tahap ini kedua belah pihak hanya memberikan gambaran tentang diri masing-masing, dan umumnya dalam bentuk salam perkenalan yang bersifat sangat umum.

b. Tahap Penjajagan (*experimenting*)

Masing-masing pihak mengajukan pertanyaan-pertanyaan yang teratur dan terstruktur, untuk dapat memperoleh informasi atau gambaran keadaan...
masing-masing pihak. Tahap ini biasanya merupakan tahap penentuan apakah hubungan akan berlanjut atau dihentikan.

c. Tahapan pendalaman (intensifying):
Hubungan menjadi tidak begitu formal dan bersifat lebih mendalam. Pada tahap ini keterbukaan diri (self-disclosure) menjadi penting, karena pada tahap ini masing-masing pihak akan melihat secara utuh keprobadian masing-masing, dan membangun kesepakatan dan komitmen pada tahap hubungan yang dibina.

d. Tahap Penyatuan (integrating):
Masing-masing pihak bergabung dan menyatu. Mereka mulai melakukan kegiatan-kegiatan secara bersama-sama, selalu mengatasnamakan kedua belah pihak dengan menyebut 'kami' (we). Pada tahap ini mulai terbentuk identitas kebersamaan (shared relational identity) antara kedua belah pihak.

e. Tahap Pengukuhan (bonding)
Hubungan yang telah terbina diumumkan, bahkan kadang-kadang disahkan secara hukum.

2. Model “Pemutusan” Hubungan (Knapp’s relationship termination model)
Model ini terbagi dalam 5 jenjang pula, yaitu

a. Pembedaan (Defferentiating):
Pada tahap ini para pihak mulai menonjolkan keakuannya. Mereka tidak lagi mempergunakan kata kamu sebagai tanda kebersamaan tetapi lebih memilih kata saya. Tanpa didsdari pada pihak ining menunjukan bahwa mereka memiliki kebebasan dan berhak untuk bertindak sendiri. Keadaan ini memberikan dua arti yang bertolak belakang, yaitu bahwa mereka saling mempercayai sehingga tidak perlu selalu bersama; atau merupakan peringatan tentang hubungan kedua belah pihak yang perlu ditinjau kembali.

b. Pembatasan (Circumscribing):
Pada tahap ini komunikasi antara kedua belah pihak muai berkurang. Walaupun secara kenampakan dari luar hubungan mereka adalah wajar dan
normal, namun pada kenyataannya mereka condong untuk menghindari diskusi atau pembicaraan dengan topik-topik tertentu. Pada tahap ini masih dapat dilakukan usaha-usaha untuk memulihkan hubungan kea rah yang positif.

c. Kemacetan (Stagnanting):
 Merupakan tahap dimana telah terjadi kemacetan komunikasi. Kedua belah pidak berusaha untuk menghindari pembicaraan tentang hubungan mereka, karena mereka sudah dapat memperkirakan apa yang akan dikatakan oleh pihak lain. Pada thap inilah orang mulai sabar bahwa telah terjadi sesuatu dengan hubungan mereka.

 d. Penghindaran (Avoiding):
 Tahap ini dimana kedua belah pihak secara fisik memisahkan diri. Mereka berusaha menghindari peluang-peluang untuk bersama maupun untuk berdiskusi.

 e. Pemutusan (terminating):
 Tahap ini merupakan akhir dari sebuah hubungan interpersonal. Hubungan dapat berakhir secara wajar atau tidak wajar, dan pemutusan hubungan ini pun berakhir dengan baik atau tidak baik.

Proses hubungan interpersonal Knapp dapat dijelaskan dengan gambar 14 yang berbentuk tiga kolom tangga. Tangga pertama adalah tangga yang menunjukkan tahapan dimulainya proses pembinaan sebuah hubungan interpersonal. Tangga ini diawali dengan anak tangga yang paling bawah, yaitu pengenalan, dan berakhir pada anak tangga yang paling atas, yaitu pengukuhan. Pengukuhan hubungan interpersonal ini merupakan titik tertinggi dari sebuah hubungan.

Tangga kolom ketiga adalah tangga yang menunjukan suatu tahap pemutusan hubungan yang berawal dari munculnya ras ‘perbedaan’ antara kedua belah pidak. Secara ssadar atau tidak, masing-masing pihak akan memunculkan ‘edo’nya.

Tangga kolom tengan merupakan tangga yang menunjukkan bahwa pada setiap tahapan selalu ada usaha penyelarasan atau pengendalian. Namun apabila...
pengendalian atau penyelarasan itu tidak berhasil, maka hubungan interpersonal akan sampai pada anak tangga yang paling bawah, yaitu pemutusan hubungan.

3. **Model “Penyaringan Hubungan” (Duck’s Relationship Filtering Model):**

Model yang dikembangkan oleh Duck ini mengandalkan saringan(filters) yang dipergunakan untuk memilih tahap hubungan yang ingin dibangun dengan orang lain. Model penyaringan dilakukan melalui 4 isyarat:

a. **Sosiological/ Incidental Cues**;

Saringan pertama ini menggambarkan kendala-kendala yang akan terjadi dalam pertemuan kita dengan orang lain, sebagai akibat lokasi tempat tinggal atau tempat kerjanya.

b. **Preteraction Cues**;

Adanya informasi awal yang kita peroleh tentang seseorang yang belum pernah kita temui, kadang-kadang sudah dapat memberikan masukan, apakah kita akan menjalin hubungan dengan orang tersebut atau tidak.

c. **Interact Cues**;

Setelah kita mulai berinteraksi dengan orang lain, kita dapat menentukan apakah kita akan melanjutkan hubungan dengan orang tersebut.

d. **Cognitive Cues**;

Merupakan tahapan yang lebih dalam dari hubungan yang dirintis. Pada tahap ini saatnya kita menentukan pilihan, atas dasar kepribadian dan tingkat di mana keserasian dua pidak akan terjadi.

e. **Keterampilan Dalam Komunikasi Interpersonal**

Komunikasi interpersonal yang efektif lebih dari hanya sekedar berbicara dan mendengarkan. Komunikasi ini berkaitan dengan pembinaan hubungan antar manusia yang ditandai dengan kerjasama, kejujuran, ketepatan, keterbukaan dan saling menghargai. Banyak aspek yang mempengaruhi pembentuk sebuah hubungan interpersonal, namun dalam buku ini hanya akan membahas beberapa
aspek dasar saja, yaitu; keterbukaan (self-disclosure, ketegasan seseorang (assertiveness), dan mengenali konflik.

1. Membuka diri (Self Disclosure)

Membuka diri merupakan strategi yang berguna untuk berbagi informasi dengan orang lain. Dengan berbagi informasi maka kedekatan individu dan hubungan interpersonal akan lebih dekat semakin kuat. Membuka diri biasanya dilakukan pada saat kita pertama kali bertemu dengan orang lain.

- Ensklopedia online Wikipedia menuliskan bahwa Self-disclosure atau mebuka diri adalah “suatu tindakan yang dilakukan secara sadar maupun tidak untuk mengungkapkan tentang diri kita kepada orang lain”. Self-disclosure termasuk di dalamnya pemikiran, perasaan, aspirasi, tujuan, kesalahan, sukses, impian, senang atau ketidak-senangan seseorang.

- Rebecca Perillo dari universitas Southern Maine mendefinisikan bahwa “membuka diri adalah sebuah proses penyediaan informasi untuk individu lain; Informasi yang dibuka termasuk pendapat seseorang, perasaan, pengalaman masa lalu, dan rencana kedepan. Membuka diri memegang peran kunci dalam pengembangan hubungan dan digambarkan sebagai komponen yang dapat menyelaraskan dan membangun sebuah hubungan.

- Membuka diri merupakan karakteristik pribadi. Fisher dan Adams menyatakan bahwa semua pengetahuan tentang diri kita dapat diklasifikasikan dalam dua kategori yaitu ‘pengetahuan publik’ (apa yang boleh diketahui oleh public tentang kita), dan ‘pengetahuan pribadi’ (yang diketahui oleh kita sendiri). Jadi apabila seseorang membuat diri kepada orang lain, berarti ia memberikan informasi pribadinya untuk dapat diketahui oleh umum

Salah satu cara untuk melihat proses dan fungsi seseorang membuka diri adalah dengan mempergunakan Johari Window.

2. Jendela Johari (Johari Window)

Luft dan Harry Ingham adalah dua orang peneliti yang menyatakan bahwa dalam diri manusia terdapat aspek-aspek dari kepribadiannya yang terbuka dan
diketahui umum, namun ada pula yang hanya diketahui oleh dirinya sendiri.
Pada saat yang sama ada pula hal-hal mengenai dirinya yang diketahui oleh orang lain, namun dirinya sendiri tidak mengetahui.
Ada pula sisi atau bagian dari seseorang yang diketahui siapapun, baik oleh dirinya sendiri maupun oleh orang lain.

a. Kawasan Terbuka (The Public Area)
Jendela ini menggambarkan kawasan di mana orang dapat memperoleh informasi tentang diri kita atau seseorang. Informasi yang ada pada kawasan ini bukan saja berupa hal-hal yang sifatnya factual, tetapi juga perasaan, keinginan, harapan dan lain mengetahui kekeuatan dan kelemahan seseorang atau diri kita.

b. Kawasan Buta (The Blind Area)
Kawasan ini berisikan hal-hal tentang diri kita sendiri yang diketahui oleh orang lain tetapi kita sendiri tidak mengetahuinya. Hal-hal ini dapat bersifat negative atau positif, dan mempengaruhi penilaian orang tehadap diri kita.

c. Kawasan Tak Dikenal (The Unknown Area)
Kawasan ini berisikan hal-hal tentang diri tyang tidak ddiketahui oleh siapapun., baik oleh diri kita sendiri maupun oleh orang lain. Salah satu penyebabnya, kemungkinan karena kita belum pernah memunculkannya di depan umum, atau kemungkinan terkubur jauh dalam diri kita.

d. Kawasan Privat (The Hidden Area)
Kawasan ini berisi hal-hal yang hanya diketahui oleh diri kita sendiri dan bersifat pribadi., buka merupakan konsumsi umum atau orang lain atau konsumsi public.

Proses pemindahan informasi dari wilayah tersembunyi yang bersifat pribadi ke jendela umum untuk memperbesar wilayah umum disibut sebagai membuka diri atau “self-disclosure”.

Harus dipahami bahwa membuka diri merupakan proses yang rumit. Diperlukan adanya keberanian dan niatan yang cukup besar untuk membuka diri lebih banyak.

Untuk dapat meningkatkan hubungan interpersonal diperlukan keberanian untuk membuka diri oleh kedua belah pihak. Membuka diri oleh memberikan lebih banyak informasi tentang siapa diri kita kepada pihak lain. Pada gambar 16 telihat bahwa dengan mendorong garis vertical ke sebelah kiri, kawasan umum akan menjadi lebih besar dan kawasan privat akan lebih menjadi kecil. Disamping itu dengan bekal umpan balik dari pihak lain kita akan lebih mengetahui informasi yang tentang diri kita, yang tidak diketahui.

Saru hal yang perlu kita sadari terlalu membuka diri dapat membawa dampak yang kurang baik, bagi diri kita pribadi meupun bagi hubungan interpersonal yang kita bangun.

3. Keterampilan Asertif (Assertiveness Skill)

Keterampilan asertif adalah kemampuan seseorang untuk menyampaikan pemikiran-pemikiran dan perasaan yang besifat positif maupun negative, dengan cara terbuka, jujur, dan langsung. Kita bertanggung jawab terhadap diri sendiri kit dan tindakan kita, tanpa menghakimi atau menyalahkan orang lain. Hal ini memberikan kemampuan kepada kita untuk berdebat secara konstruktif dan mencari solusi yang dapat diterima oleh dua belah pihak.

Ketegasan dalam komunikasi dan hubungan social menyangkut keterbukaan, kejujuran, dan ketetapan, teguh(firm) pada tempatnya dan fleksibel.

Beberapa keuntungan yang dapat diperoleh dari penggunaan komunikasi asertif, antara lain: memberikan kenyamanan pada kita dan juga orang lain;
mengarahkan pada perkembangan untuk saling menghargai; meningkatkan harga diri; membantu pencapaian sasaran yang kita harapkan; memperkecil kemungkinan menyakiti orang lain.

Di lain pihak apabila ketegasan terlalu jauh sampai kepada pengambilan keuntungan dari orang lain, ini akan berubah menjadi hak orang lain dan membuat meraka merasa dibawah.

Di samping keuntungan terdapat pula kerugian-kerugian dalam penggunaan komunikasi asertif. Ia berisiko bahwa kemungkinan orang lain tidak memahaminya, sehingga tidak dapat menerima gaya komunikasi asertif ini. Terdapat enam karakteristik utama dalam komunikasi asertif, yaitu: tapan mata (eye contact), bentuk tubuh (body posture), isyarat (gesture), suara (voice), waktu(timing), isi (content) pembicaraan.

Satu hal yang pasti adalah komunikasi asertif bukanlah merupakan tindakan yang agresif (NOT Being Aggressive), namun merupakan sebuah pilihan (choice)

4. I-Message dan You-Message

“I-Message” adalah cara yang baik untuk memberitahukan kepada orang lain apa yang anda pikirkan. I-message terdiri dari tiga bagian, yaitu ‘perilaku’ (behavior) yang ditunjukkan oleh orang lain; ‘dampak’ (effect) yang terjadi sebagai akibat perilaku yang ditunjukkannya; dan ‘perasaan’ (feeling) dari orang yang terkena perilaku tersebut. Dengan menggunakan pesan-pesan yang memperhatikan tiga kata tersebut di atas, berarti kita telah memberikan informasi yang lengkap, tanpa celah yang dapat mengakibatkan interpretasi lain atau keraguan dari pihak lain. Sebagai contoh: manakala seorang anak buah terlambat hadir rapat, anda mengakatakan :” Apabila anda datang terlambat(perilaku), saya merasa kesal (perasaan) karena ini berarti bahwa saya harus mengulangi informasi yang telah didengarkan oleh rekan-rekan anda sebelumnya(dampak)” Pernyataan anda tersebut akan lebih jauh lebih baik dan cukup tegas, daripada mengabaikan permasalahan atau menunjukan kemarahan anda.
“I” statement merupakan bagian dari komunikasi asertif, karena menjadi asertif termasuk kemampuan kita untuk menyatakan perasaan dan apa yang kita butuhkan secara pada tempatnya.

Salah satu tantangan terbesar dalam berkomunikasi adalah kemampuan mendengarkan(listening). Kemampuan isi sangat penting agar kita dapat menyerap informasi, dan belajar memahaminya dari sudut pandang pemberi pesan.

5. Konflik Interpersonal

Secara sederhana konflik dapat dinyatakan sebagai sebuah “ekspresi perjuangan” antara dua orang atau kelompok atau lebih, yang saling berkaitan satu dengan lainnya. Mereka kemudian yang menyadari bahwa mereka lebih lagi sejalan, dan tak mungkin lagi untuk tampil bersama.

Ciri-ciri terjadinya konflik interpersonal adalah:

- Adanya ekspresi perjuangan; apabila gejala ini sudah terlihat, maka kedua belah pihak harus melakukan komunikasi untuk hal-hal yang dapat menimbulkan konflik.
- Adanya gejala saling menyalahkan antara kedua belah pihak; konflik terjadi karena mulai terjadi adanya perbedaan persepsi, sudut pandang.
- Memiliki mentalitas “win-lose”; berusaha untuk memenangkan posisinya tanpa memperhatikan posisi pihak lainnya.
Adanya ketiga gela tadi telah Nampak, maka perlu adanya tindakan untuk mengatasi konflik tersebut, karena hubungan interpersonal yang dibina tentunya diharapkan dapat terjalin selama mungkin.

Konflik harus di kelola dan dikendalikan dengan cara:

- Mengevaluasi dan mempertimbangkan pendapat para pihak yang sedang konflik.
- Mengendalikan agar pihak-pihak yang sedang konflik mau mendengarkan dan mungkin menerima pendapat pihak lain, walaupun tidak menyenangkan.
- Bertindak netral dan berusaha untuk tidak berpihak.
- Masing-masing pihak harus berusaha untuk bertindak dan membuat strategi yang pada situasi “win-win solution”.

Konflik merupakan bagian dari hubungan interpersonal. Oleh karenanya mengelola konflik merupakan sesuatu yang terpenting jika diinginkan hubungan itu akan dapat bertahan lama.

6. Keberhasilan Komunikasi Interpersonal

Keberhasilan sebuah komunikasi dapat dilihat tiga komponen, yaitu:

a. Outcome:
 Hasil komunikasi harus diketahui oleh semua pihak sehingga dapat ditentukan apa yang diinginkan, kapan, serta sumber daya yang diperlukan untuk mencapainya.

b. Sensory Awareness:
 Penggunaan indera dan kepekaan kita untuk mengetahui apakah kita bergerak menuju hasil yang kita harapkan.

c. Flexibility:
 Kemampuan untuk merubah hasil dan respon unutk dapat mencapai hasil yang kita inginkan.
Bahan Bacaan 6 : Macam-macam Metode mengajar untuk Membangun Komunikasi efektif dengan peserta didik

a. Pengertian Metoda

Metode mengajar adalah suatu pengetahuan tentang cara-cara mengajar yang dipergunakan oleh guru atau instruktur. Dalam pengertian lain metode adalah teknik penyajian yang digunakan oleh guru untuk mengajar atau menyajikan bahan pelajaran kepada siswa di dalam kelas agar pelajaran tersebut dapat ditangkap, dipahami dan digunakan oleh siswa dengan baik.

Mengajar sebagai bagian penting dari upaya mencapai tujuan pendidikan tidak dapat dipisahkan dari hakikat pendidikan itu sendiri sebagai suatu bentuk usaha untuk memanusiakan manusia. Jika dihubungkan dengan pengertian pendidikan diarahkan untuk meningkatkan kecerdasan serta dapat memenuhi kebutuhan pembangunan nasional dan bertanggung jawab atas pembangunan bangsa sehingga alam lingkungan sekolah dimaksudkan sebagai lembaga untuk mewujudkan tujuan pendidikan nasional sebagaimana yang ditegaskan dalam UU Republik Indonesia No. 20 Tahun 2003 tentang Sistem Pendidikan Nasional yaitu mengembangkan potensi peserta didik agar menjadi manusia yang beriman dan bertaqwa kepada Tuhan Yang Maha Esa, berakhlak mulia, sehat, berilmu, cakap, kreatif, mandiri, dan menjadi warga negara yang demokratis serta bertanggung jawab.
Siswa sebagai sasaran pembelajaran, dituntut untuk meningkatkan kemampuan belajarnya sehingga dapat memiliki hasil belajar yang baik agar tujuan pendidikan dapat tercapai. Dalam upaya meningkatkan hasil belajar siswa, maka salah satu komponen yang perlu mendapat perhatian adalah penggunaan metode mengajar yang tepat agar siswa dapat menguasai dan memahami konsep-konsep materi pembelajaran dan keterampilan.

Metode mengajar merupakan salah satu aspek yang sangat penting oleh guru dalam proses belajar mengajar di sekolah. Dengan menggunakan metode mengajar yang tepat diharapkan siswa dapat memahami secara optimal materi pelajaran yang diajarkan oleh guru. Menurut Djayadisastra (1985:13) mengemukakan bahwa “berhasil tidaknya siswa dalam pembelajaran sangat tergantung pada tepat atau tidaknya metode mengajar yang dipergunakan oleh guru”.

Salah satu usaha yang tidak pernah guru tinggalkan adalah bagaimana memahami kedudukan metode sebagai salah satu komponen yang ikut ambil bagian bagi keberhasilan kegiatan belajar mengajar.

b. Ragam Metoda Mengajar

Metode mengajar banyak macam dan jenisnya, setiap jenis metode mengajar mempunyai kelemahan dan kelebihan masing-masing, tidak menggunakan satu macam metode saja, mengkombinasikan penggunaan beberapa metode yang sampai saat ini masih banyak digunakan dalam proses belajar mengajar. Menurut Nana Sudjana (dalam buku Dasar-dasar Proses Belajar Mengajar, 1989:78 – 86), terdapat bermacam-macam metode dalam mengajar, yaitu Metode ceramah, Metode Tanya Jawab, Metode Diskusi, Metode Resitasi, Metode Kerja Kelompok, Metode Demonstrasi dan Eksperimen, Metode sosiodrama (role-playing), Metode problem solving, Metode sistem regu (team teaching), Metode latihan (drill), Metode karyawisata (Field-trip), Metode survai masyarakat, dan Metode simulasi. Untuk lebih jelasnya, penulis uraikan sebagai berikut:
1) Metode ceramah adalah penuturan bahan pelajaran secara lisan. Metode ini tidak senantiasa jelek bila penggunaannya betul-betul disiapkan dengan baik, didukung dengan alat dan media, serta memperhatikan batas-batas kemungkinan penggunaannya. Metode ini seringkali digunakan guru dalam menyampaikan pelajaran apabila menghadapi sejumlah siswa yang cukup banyak, namun perlu diperhatikan juga bahwa metode ini akan berhasil baik apabila didukung oleh metode-metode yang lain, misalnya metode tanya jawab, latihan dan lain-lain. Guru harus benar-benar siap dalam hal ini, karena jika disampaikan hanya ceramah saja dari awal pelajaran sampai selesai, siswa akan bosan dan kurang berminat dalam mengikuti pelajaran, bahkan bisa-bisa siswa tidak mengerti apa yang dibicarakan oleh gurunya.

2) Metode Tanya Jawab adalah metode mengajar yang memungkinkan terjadinya komunikasi langsung yang bersifat who way traffic, sebab pada saat yang sama terjadi dialog antara guru dan siswa. Guru bertanya siswa menjawab atau siswa bertanya guru menjawab. Dalam komunikasi ini terlihat adanya hubungan timbal balik secara langsung antara guru dengan siswa.

3) Metode Diskusi adalah tukar menukar informasi, pendapat dan unsur-unsur pengalaman secara teratur dengan maksud untuk mendapat pengertian yang sama, lebih jelas dan lebih teliti tentang sesuatu atau untuk mempersiapkan dan merampungkan keputusan bersama. Oleh karena itu diskusi bukanlah debat, karena debat adalah perang mulut orang beradu argumentasi, beradu paham dan kemampuan persuasi untuk memenangkan pahamnya sendiri. Dalam diskusi tiap orang diharapkan memberikan sumbangan sehingga seluruh kelompok kembali dengan paham yang dibina bersama.

4) Metode Resitasi, tugas tidak sama dengan pekerjaan rumah, tetapi jauh lebih luas dari itu. Tugas dapat dilaksanakan di rumah, di perpustakaan, di sekolah atau di tempat lainnya. Tugas merangsang anak untuk aktif belajar baik secara individu maupun secara kelompok.
5) Metode kerja kelompok adalah siswa dalam satu kelas dipandang dalam satu kesatuan (kelompok) sendiri atau pun dibagi atas kelompok-kelompok kecil (sub-sub kelompok).

6) Metode demonstrasi dan eksperimen adalah metode mengajar yang sangat efektif, sebab membantu para siswa untuk mencari jawaban dengan usaha sendiri berdasarkan fakta yang benar. Demonstrasi yang dimaksud ialah suatu metode mengajar yang memperlihatkan bagaimana proses terjadinya sesuatu.

7) Metode sosiodrama (role-playing), sosiodrama pada dasarnya mendramatisasikan tingkah laku dan hubungannya dengan masalah sosial.

8) Metode problem solving, metode ini bukan sekedar metode mengajar tetapi juga merupakan satu metode berfikir, sebab dalam solving dapat menggunakan metode lainnya dimulai dari menarik data sampai menarik kesimpulan.

9) Metode sistem regu (team teaching), merupakan metode mengajar dua orang guru atau lebih bekerjasama mengajar sebuah kelompok siswa, jadi kelas dihadapi beberapa guru. Sistem regu banyak macamnya, sebab untuk satu regu tidak senantiasa guru secara formal saja, tetapi dapat melibatkan orang-orang luar yang dianggap perlu sesuai dengan keahlian yang kita butuhkan.

11) Pembelajaran Langsung (DL=Direct Learning). Pengetahuan yang bersifat informasi dan prosedural yang menjurus pada ketrampilan dasar akan lebih efektif jika disampaikan dengan cara pembelajaran langsung. Sintaknya adalah menyiapkan siswa, sajian informasi dan prosedur, latihan terbimbing, refleksi,
latihan mandiri, dan evaluasi. Cara ini sering disebut dengan metode ceramah atau ekspositori (ceramah bervariasi).

14) SAVI. Pembelajaran SAVI adalah pembelajaran yang menekankan bahwa belajar haruslah memanfaatkan semua alat indra yang dimiliki siswa. Istilah SAVI sendiri adalah kependekan dari: Somatic yang bermakna gerakan tubuh (hands-on, aktivitas fisik) di mana belajar dengan mengalami dan melakukan; Auditory yang bermakna bahwa belajar haruslah dengan melalui mendengarkan, menyimak, berbicara, presentasi, argumentasi, mengemukakan pendapat, dan menanggapi; Visualization yang bermakna belajar haruslah menggunakan indra mata melalui mengamati, menggambar, mendemonstrasikan, membaca, menggunakan media dan alat peraga; dan Intellectualy yang bermakna bahwa belajar haruslah menggunakan kemampuan berpikir (minds-on) nbelajar haruslah dengan konsentrasi pikiran dan berlatih menggunakan kemampuan melalui bernalar, menyelidiki, mengidentifikasi, menemukan, mencipta, mengkonstruksi, memecahkan masalah, dan menerapkan.

15) Teams Games Tournament (TGT). Penerapan model ini dengan cara mengelompokkan siswa heterogen, tugas tiap kelompok bisa sama bisa
aberbeda. Setelah memperoleh tugas, setiap kelompok bekerja sama dalam bentuk kerja individual dan diskusi. Usahakan dinamika kelompok kohesif dan kompak serta tumbuh rasa kompetisi antar kelompok, suasana diskusi nyaman dan menyenangkan seperti dalam kondisi permainan (games) yaitu dengan cara guru bersikap terbuka, ramah, lembut, santun, dan ada sajian bodoran. Setelah selesai kerja kelompok sajikan hasil kelompok sehingga terjadi diskusi kelas. Jika waktunya memungkinkan TGT bisa dilaksanakan dalam beberapa pertemuan, atau dalam rangka mengisi waktu sesudah UAS menjelang pembagian raport. Sintaknya adalah sebagai berikut:

a) Buat kelompok siswa heterogen 4 orang kemudian berikan informasi pokok materi dan mekanisme kegiatan

b) Siapkan meja turnamen secukupnya, misal 10 mej 10 dan untuk tiap meja ditempati 4 siswa yang berkemampuan setara, meja I diisi oleh siswa dengan level tertinggi dari tiap kelompok dan seterusnya sampai meja ke-X ditepati oleh siswa yang levelnya paling rendah. Penentuan tiap siswa yang duduk pada meja tertentu adalah hasil kesepakatan kelompok.

c) Selanjutnya adalah opelaksanaan turnamen, setiap siswa mengambil kartu soal yang telah disediakan pada tiap meja dan mengerjakannya untuk jangka waktu tertentu (misal 3 menit). Siswa bisa mengerjakan lebih dari satu soal dan hasilnya diperiksa dan dinilai, sehingga diperoleh skor turnamen untuk tiap individu dan sekaligus skor kelompok asal. Siswa pada tiap meja turnamen sesua dengan skor yang diperoleh diberikan sebutan (gelar) superior, very good, good, medium. Bumping, pada turnamen kedua (begitu juga untuk turnamen ketiga-keempat dst.), dilakukan pergeseran tempat duduk pada meja turnamen sesuai dengan sebutan gelar tadi, siswa superior dalam kelompok meja turnamen yang sama, begitu pula untuk meja turnamen yang lainnya diisi oleh siswa dengan gelar yang sama.

d) Setelah selesai hitunglah skor untuk tiap kelompok asal dan skor individual, berikan penghargaan kelompok dan individual.
16) **Jigsaw.** Model pembelajaran ini termasuk pembelajaran koperatif dengan sintaks seperti berikut ini. Pengarahan, informasi bahan ajar, buat kelompok heterogen, berikan bahan ajar (LKS) yang terdiri dari beberapa bagian sesuai dengan banyak siswa dalam kelompok, tiap anggota kelompok bertugas membahasa bagian tertentu, tiap kelompok bahan belajar sama, buat kelompok ahli sesuai bagian bahan ajar yang sama sehingga terjadi kerja sama dan diskusi, kembali ke kelompok asal, pelaksana tutorial pada kelompok asal oleh anggotan kelompok ahli, penyimpulan dan evaluasi, refleksi.

17) **Artikulasi** adalah mode pembelajaran dengan simpak: penyampaian kompetensi, sajian materi, bentuk kelompok berpasangan sebangku, salah satu siswa menyampaikan materi yang baru diterima kepada pasangannya kemudian bergantian, presentasi di depan hasil diskusinya, guru membimbing siswa untuk menyimpulkan.

18) **Debate** adalah model pembelajaran dengan sisntaks: siswa menjadi 2 kelompok kemudian duduk berhadapan, siswa membaca materi bahan ajar untuk dicermati oleh masing-masing kelompok, sajian presentasi hasil bacaan oleh perwakilan salah satu kelompok kemudian ditanggapi oleh kelompok lainnya begitu seterusnya secara bergantian, guru membimbing membuat kesimpulan dan menambahkannya bila perlu.

19) **Role Playing**, Sintak dari model pembelajaran ini adalah: guru menyiapkan scenario pembelajaran, menunjuk beberapa siswa untuk mempelajari skenario tersebut, pembentukan kelompok siswa, penyampaian kompetensi, menunjuk siswa untuk melakonkan skenario yang telah dipelajarnya, kelompok siswa membahas peran yang dilakukan oleh pelakon, presentasi hasil kelompok, bimbingan penyimpulan dan refleksi.
D. Aktivitas Pembelajaran

Aktivitas 1 Diskusi Kelompok: Pengantar Idenfitikasi Isi Materi Pembelajaran.

Sebelum melakukan kegiatan pembelajaran, lakukan diskusi dengan sesama peserta diklat di kelompok Anda untuk mengidentifikasi hal-hal berikut:

a. Kesiapan apa yang diperlukan untuk mempelajari materi pembelajaran ini?

b. Jelaskan kompetensi apa saja yang akan Anda capai dalam mempelajari materi pembelajaran ini?

c. Sebutkan bahan bacaan apa saja yang ada di materi pembelajaran ini?

d. Jelaskan cara Anda mempelajari materi pembelajaran ini?

Jawablah pertanyaan-pertanyaan di atas dengan menggunakan LK - 1.

Jika Anda dapat menjawab pertanyaan-pertanyaan di atas dengan baik, maka Anda bisa melanjutkan pembelajaran dengan melakukan Aktivitas Pembelajaran berikut.

Aktivitas 2 Diskusi dan Penggalan Informasi: Pengantar Komunikasi

Diskusikan dan gali informasi melalui internet tentang beberapa permasalahan berikut ini dalam kelompok Anda.

a. Menurut Anda mengapa keterampilan komunikasi dalam kegiatan pembelajaran perlu dikuasai oleh Guru?

b. Apa kendala umum yang terjadi yang tidak disadari oleh Guru sehingga peserta didik seringkali mengalami kesulitan menangkap materi pembelajaran?

c. Bagaimana cara mengatasi hambatan komunikasi oleh Guru?

Jawablah permasalahan tersebut dalam kelompok dan tuliskan jawabannya pada LK-2. Selanjutnya salah satu kelompok mempresentasikan hasil diskusinya dan kelompok lain memberi tanggapan, dan widyaiswara/fasilitator bersama peserta didik memberi kesimpulan untuk penguatan materi.
Aktivitas 3: Teknik Komunikasi Efektif di Kelas
a. Jelaskan mengapa komunikasi yang dilakukan oleh Guru harus benar-benar efektif?
 Akibat apa yang ditimbulkan, jika komunikasi di kelas tidak efektif?

b. Berikan penjelasan dan contoh aplikasi dalam pembelajaran di kelas terhadap hal-hal berikut ini:
 1) Keterampilan Bahasa
 2) Bahasa Tubuh

c. Bagaimana mengatasi kesulitan peserta didik dalam berkomunikasi?

Aktivitas 4: Komunikasi Efektif
1. Mengapa teknik komunikasi efektif penting?
2. Jelaskan jenis kegiatan yang harus anda lakukan dalam suatu pekerjaan?
3. Jelaskan 5 hukum komunikasi efektif dan berikan penjelasannya?
4. Jelaskan beberapa kebiasaan mendengar yang buruk?
5. Jelaskan beberapa kebiasaan mendengar yang baik?

Aktivitas 5: Komunikasi Interpersonal
A. Proses Interpersonal
 Baca pertanyaan no 1 sampai dengan 15, kemudian berikan jawaban dengan salah satu pengertian sebagai berikut.
 A. Encode
 B. Decode
 C. Channel
 D. Message/Umpam balik
 E. Noise/Gangguan
 F. Context/Lingkungan
1. Anak-anak bermaksud membuat videotape sendiri dan mengirimkan ke neneknya, daripada menulis surat.

2. Herman berusaha mencari jalan untuk memberitahukan kepada Ida, bahwa ia tidak dapat ikut berlibur ke Bali.

3. Ida menafsirkan pernyataan Herma bahwa ia tidak dapat menemani pergi berlibur ke Bali, sebagai ungkapan Herwan ia tidak mencintai Ida lagi.

4. Ruangan itu begitu panas dan penuh asap rokok, keadaan ini menyebabkan Ari sulit untuk berkonsentrasi pada pembicaraan temannya.

5. Lina tersenyum pada saat Lukito berbicara kepadanya.

7. karena Jakob belum pernah menikah, maka sulit baginya untuk memahami mengapa Lina yang sudah menikah, berniat mengurangi waktu bertemuinya dengan Jakob.

9. Erin berasal dari keluarga kaya, dan Keti berasal dari keluarga sederhana. Mereka memiliki konflik yang sangat serius bagaimana mereka mengelola uang

10. Jessica memutuskan untuk berbohong pada kelompoknya tentang alasan mengapa ia tidak hadir dalam rapat yang diadakan kemarin

11. “Sya menolak untuk berangkay”, kata Dadi.

12. Levi berhasil mengemukakan alasan yang tepat untuk menyakinkan orang tuanya agar membeli sebuah mobil baru untuknya.
B. Sifat Pasif, Asersif dan Agresif

1. Sebutkan paling sedikit 7 hal yang hilang sebagai akibat dari sifat non-asertif atau pasif yang anda miliki.

2. Sebutkan paling sedikit 5 hal yang anda peroleh sebagai akibat dari sifat anda yang asertif.

3. Sebutkan kerugian yang anda peroleh sebagai akibat sifat agresif yang anda miliki.

4. Apa yang anda akan lakukan, apabila anda berdiskusi dengan orang yang memiliki tendensi selalu ingin menang.

5. Tahapan apa yang akan anda lakukan dalam mempertahankan pendapat dan konsep anda.

C. Studi Kasus

Pada saat Negara kita terkena gempa bumi dan tsunami, beredar berita tentang prediksi akan terjadi tsunami di daerah-daerah lain. Akibat dari berita ini banyak penduduk yang panic, terutama setelah ada pihak-pihak yang tidak bertanggung jawab menyampaikan pada masyarakat melalui SMS.

Telaah masalah ini dipandang dari sudut Komunikasi Interpersonal.
LEMBAR KERJA KB 1

TEKNIK KOMUNIKASI EFEKTIF DALAM PEMBELAJARAN

LK – 01 mengidentifikasi isi Materi Pembelajaran

1. Kesiapan apa yang diperlukan untuk mempelajari materi pembelajaran ini?

..
..
..
.............

2. Jelaskan kompetensi apa saja yang akan Anda capai dalam mempelajari materi pembelajaran ini?

..
..
..
.............

3. Sebutkan bahan bacaan apa saja yang ada di materi pembelajaran ini?

..
..
..
.............
4. Jelaskan cara Anda mempelajari materi pembelajaran ini?

..
..
..
..
..

LK – 02 Diskusi dan penggalian Informasi tentang perlunya pemanfaatan media dalam pembelajaran

1. Menurut Anda mengapa keterampilan komunikasi dalam kegiatan pembelajaran perlu dikuasai oleh Guru?

..
..
..
..
..

2. Apa kendala umum yang terjadi yang tidak disadari oleh Guru sehingga peserta didik seringkali mengalami kesulitan menangkap materi pembelajaran?

..
..
..
3. Bagaimana cara mengatasi hambatan komunikasi oleh Guru?

LK - 03. Diskusi dan menggali informasi penerapan TIK dalam pembelajaran

1. Setelah Anda mempelajari bahan bacaan 3, dari beberapa contoh penerapan TIK yang diberikan, contoh mana yang memungkinkan dan sesuai untuk diterapkan dalam kegiatan pembelajaran di sekolah Anda!
2. Mengapa Anda memilih contoh tersebut?

3. Bagaimana langkah yang Anda lakukan untuk menerapkan TIK tersebut dalam kegiatan pembelajaran di kelas?

LK 4: Komunikasi Efektif

1. Mengapa teknik komunikasi efektif penting?
2. Jelaskan jenis kegiatan yang harus anda lakukan dalam suatu pekerjaan?

..
..

3. Jelaskan 5 hukum komunikasi efektif dan berikan penjelasannya?

..
..

4. Jelaskan beberapa kebiasaan mendengar yang buruk?

..
..

5. Jelaskan beberapa kebiasaan mendengar yang baik?

..
..

LK - 05 : Komunikasi Interpersonal

1. Sebutkan paling sedikit 7 hal yang hilang sebagai akibat dari sifat non-asertif atau pasif yang anda miliki

..
..
..
..
..

2. Sebutkan paling sedikit 5 hal yang anda peroleh sebagai akibat dari sifat anda yang asertif.
3. Sebutkan kerugian yang anda peroleh sebagai akibat sifat agresif yang anda miliki.

4. Apa yang anda akan lakukan, apabila anda berdiskusi dengan orang yang memiliki tendensi selalu ingin menang.

5. Tahapan apa yang akan anda lakukan dalam mempertahankan pendapat dan konsep anda.

LK - 06 : Macam – macam Metode Mengajar untuk Membangun Komunikasi efektif
Dengan Peserta Didik

1. Untuk membangun komunikasi efektif dalam pembelajaran metode apa saja yang sering Anda gunakan di kelas?
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG
(TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM

2. Lakukan simulasil penerapan salah satu metode mengajar sehingga terjadi komunikasi yang efektif?

3. Berdasarkan metode yang Anda pilih apa keuntungan dan kelamahan dari masing-masing metode tersebut?

Tugas # 1 (Mandiri):
Buatlah suatu pesan kepada siswa Anda, dalam satu bentuk format memo. Isi memo: Anda ingin meminta siswa anda agar mempersiapkan tim untuk membahas rencana pembuatan mebel yang kegiatananya mencakup rancangan berkenaan dengan penggunaan mesin, proses penyiapan bahan, hingga pembuatan dan uji coba.

Tugas # 2 (Mandiri):
Siapkan RPP Anda! Buatlah tinjauan dari segi komunikasi terhadap materi yang ada; kemudian tetapkan apa saluran komunikasi yang akan Anda gunakan agar proses penyampaian materi itu efektif dan efisien.
Buatlah dalam bentuk tabulasi skenario.
Permainan # 1 (Kelompok): Pesta Telepon (waktu 15 menit).
• Anda diminta membentuk kelompok yang terdiri dari 5 orang;
• Setiap orang menggunakan ear-plug atau headset
• Anggota kelompok nomor 1, menyampaikan pesan (yang akan diberikan oleh Widyaiswara/Fasilitator)

• Buat sebuah analisis atas apa yang terjadi (bentuk file ms-word, cantumkan kelompok dan nama peserta tiap kelompok) dan email ke: guruku.luarbiasa@gmail.com
E. Rangkuman

2. Pesan atau informasi yang dikirim dalam dua tahap secara bersamaan yaitu secara verbal dan non verbal, dan untuk memiliki komunikasi yang efektif, perlu diperhitungkan faktor-faktor yang berpengaruh ruang dimana komunikasi itu terjadi, pesan verbal atau non verbal, arti yang dimaksud dengan arti yang diterima bisa saja berbeda.

3. Beberapa unsur penting dalam komunikasi yaitu adanya pengirim (sender), penerima pesan (receiver), saluran (channel), balikan (feedback), pesan (message), dan persepsi (perception) hal ini sangat berpengaruh terhadap komunikasi yang akan terjadi.

4. Penyebab kegagalan komunikasi karena tingkatan kejelasan pesan, mendorong timbulnya balikan, penggunaan bahasa yang sederhana, mendengarkan secara efektif dan membangun rasa percaya diri, oleh karena itu untuk dapat berkomunikasi dengan orang lain maka seseorang harus memahami dirinya sendiri terlebih dahulu karena konsep diri akan mempengaruhi cara seseorang berkomunikasi.

5. Dalam komunikasi interpersonal; yang sering terabaikan adalah menjadi penerima atau pendengar yang baik. Untuk menjadi penerima atau pendengar yang baik dibutuhkan kemampuan untuk mendengarkan.

6. Berkomunikasi dengan peserta didik sangatlah penting bagi guru dalam proses pembelajaran, dengan berkomunikasi yang baik akan menyampaikan berupa informasi, gagasan, arahan, harapan dan kejelasan materi pembelajaran. Melalui komunikasi...
guru akan dapat memotivasi sekaligus mengarakkan peserta didik untuk belajar lebih baik.

7. Beberapa metoda pembelajaran yang dapat digunakan di kelas sehingga terjadi komunikasi secara efektif baik siswa dengan siswa, siswa dengan guru.

F. **Tes Formatif** (Per kegiatan pembelajaran. Berupa Tes Lisan, atau Tulisan, dan Perbuatan)

1. Apa yang dimaksud dengan komunikasi?
2. Mengapa Guru harus mampu berkomunikasi dengan baik?
3. Bagaimana proses komunikasi terjadi?
G. Kunci Jawaban

1. Komunikasi adalah proses penyampaian pesan dari satu pihak kepada pihak yang lain
2. Komunikasi merupakan hal mutlak bagi guru, oleh karena itu dijadikan sebagai salah satu komponen dari strandar kompetensi guru (Permendiknas Nomor 16 Tahun 2007)
3. Membuat/menggambarkan diagram proses komunikasi (sederhana atau lengkap)

Uji Kompetensi:

Guru diminta untuk mempersiapkan sebuah topik pembelajaran yang memiliki tingkat kompetensi (C3).

Presentasi di amati oleh rekan dalam kelas, kemudian memberikan masukan terhadap aspek berikut:

1. Apakah guru tersebut berbicara dengan bahasa yang jelas?
2. Seberapa baik tata bahasa yang digunakan?
3. Berapa banyak kosa-kata yang dikuasai?
4. Apakah terdapat pelafalan yang kurang tepat?
5. Apakah Anda mengalami hal yang sama dengan rekan Anda yang melakukan presentasi?
6. Apa saran bagi guru tersebut untuk meningkatkan kemampuan komunikasinya agar semakin baik dan efektif?
KEGIATAN PEMBELAJARAN 2 : KESEHATAN DAN KESELAMATAN KERJA PADA PROSES LAS TIG/GTAW

A. Tujuan

Setelah proses diklat, dengan memperhatikan bahaya yang dapat ditimbulkan peserta diklat dapat menentukan peralatan keselamatan dan kesehatan kerja pada pengelasan las TIG (GTAW) dengan tepat.

B. Indikator Pencapaian Kompetensi

Spesifikasi kompetensi atau kinerja yang harus anda kuasai setelah mengikuti kegiatan pembelajaran ini adalah
1. Menjelaskan jenis-jenis gangguan kesehatan yang dapat terjadi pada proses pengelasan dengan menggunakan las TIG (GTAW).
2. Mendeskripsikan jenis-jenis faktor penyebab kecelakaan kerja pada saat melakukan proses pengelasan dengan las TIG (GTAW).
3. Menjelaskan fungsi dari setiap jenis APD yang harus digunakan pada saat melakukan proses pengelasan dengan las TIG (GTAW).

C. Uraian Materi

Bahan Bacaan 1 : Kesehatan dan Keselamatan Kerja (K3) di Tempat Kerja

Keselamatan kerja adalah keselamatan yang berkaitan dengan orang, mesin, pesawat, alat kerja, bahan dan proses pengolahannya, landasan tempat kerja dan lingkungannya serta cara-cara melakukan pekerjaan. Keselamatan kerja adalah tugas semua orang yang bekerja, sehingga keselamatan kerja adalah dari, oleh dan untuk setiap tenaga kerja serta orang lain, dan juga masyarakat serta lingkungan sekitarnya.

Keselamatan kerja dimaksudkan untuk mencegah terjadinya kecelakaan di tempat kerja. Kecelakaan adalah kejadian yang tak terduga dan tidak diharapkan yang dapat menimbulkan cedera fisik seseorang bahkan fatal sampai menyebabkan kematian atau cacat seumur hidup serta menyebabkan kerusakan pada harta benda, kehilangan rasa percaya diri, dan kehilangan kegiatan lain seperti olah raga dan lain-lain.
terjadi akibat kontak dengan sumber energi yang melebihi nilai ambang batas dari badan.
Ada dua hal yang terkait dengan kecelakaan, yaitu: (a) kecelakaan adalah akibat langsung dari pekerjaan, atau (b) kecelakaan terjadi pada saat pekerjaan sedang dilaksanakan. Kecelakaan ditempat kerja dapat terjadi akibat adanya kegiatan atau tindakan yang tidak aman (berbahaya) dan kondisi yang tidak aman (berbahaya). Kegiatan atau tindakan yang tidak aman dimaksudkan bahwa segala aktivitas atau tindakan yang dilakukan seseorang yang bekerja merupakan aktivitas yang dapat menyebabkan bahaya atau kecelakaan. Kegiatan atau tindakan tersebut dapat berupa: (a) tidak menggunakan Alat Pelindung Diri (APD) yang standar seperti helm las, sarung tangan, sepatu keamanan, dan pakaian kerja; (b) melakukan tindakan ceroboh/tidak sesuai dengan prosedur kerja yang berlaku pada bidang pengelasan, dan (c) kesiapan mental dan fisik yang belum optimal untuk melaksanakan pekerjaan. Adapun kondisi yang tidak aman (berbahaya), adalah kondisi dimana pada saat melaksanakan pekerjaan, kondisi disekitarnya tidak dalam keadaan aman. Kondisi tersebut diantaranya berupa: (a) lokasi kerja yang kotor dan kumuh, (b) penempatan pekerja yang tidak terencana dengan baik sehingga terjadi penumpukan pekerjaan pada suatu tempat yang sangat berpotensi untuk terjadinya bahaya, (c) fasilitas atau sarana kerja yang tidak memenuhi standar minimal, dan (d) terjadinya polusi atau pencemaran di tempat kerja.
Untuk menghindari atau mengeliminir terjadinya kecelakaan perlu penguasaan pengetahuan keselamatan kesehatan kerja dan mengetahui tindakan tindakan yang harus diambil agar keselamatan kesehatan kerja dapat berperan dengan baik. Untuk membahas hal tersebut faktor yang paling dominan adalah kecelakaan, perbuatan yang tidak aman, dan kondisi yang tidak aman. Faktor yang paling banyak terjadi di lingkungan kerja adalah adanya kecelakaan, dimana kecelakaan merupakan:
1. Kejadian yang tidak diinginkan yang dapat menimbulkan cedera fisik seseorang bahkan fatal sampai kematian/cacat seumur hidup dan kerusakan harta milik.
2. Kecelakaan biasanya akibat kontak dengan sumber energi di atas nilai ambang batas dari badan atau bangunan.
3. Kejadian yang tidak diinginkan yang mungkin dapat menurunkan efisiensi operasional suatu usaha.

 Hal-hal dalam kecelakaan dapat meliputi:
 1. Kecelakaan dapat terjadi setiap saat (80% Kecelakaan akibat kelalaian).
 2. Kecelakaan tidak memilih cara tertentu untuk terjadi.
 5. Kecelakaan selalu mempunyai sebab.

 Hal yang pertama harus ada di tempat kerja adalah poster-poster peringatan keselamatan kerja. Poster-poster peringatan bahaya dibuat dan ditempatkan pada lokasi yang sesuai. Dalam menempatkan poster harus juga memperhatikan faktor kenyamanan pegawai jangan sampai poster malah merusak konsentrasi pegawai.

 Suhu ruangan harus dijaga pada suhu normal. Suhu di atas 16°C dianjurkan untuk pekerjaan ringan, sedangkan untuk pekerjaan berat dianjurkan suhu di atas 13°C. Suhu maksimum jangan sampai melebihi suhu yang membuat orang kepanasan.

 Fasilitas sanitasi yang memadai harus disediakan, dengan fasilitas untuk mencuci dan mengerlingkan tangan. Suatu daerah harus dipisahkan dari area kerja, di mana makanan dan minuman dapat dikonsumsi tanpa terkontaminasi zat-zat yang berbahaya bagi kesehatan. Tempat orang jalan harus ditandai dengan jelas, terbebas dari lubang, licin dan terjatuh. Harus ada pengaman pada tangga. Jika pekerjaan dilakukan di malam hari harus tersedia pencahayaan yang baik.

 Kondisi tidak aman (berbahaya), merupakan kondisi fisik atau keadaan yang berbahaya yang mungkin dapat langsung mengakibatkan terjadinya kecelakaan.

 Beberapa kondisi tidak aman diantaranya:
 a. Lokasi kerja yang kumuh dan kotor
 b. Alokasi personil / pekerja yang tidak terencana dengan baik, sehingga pada satu lokasi dipenuhi oleh beberapa pekerja. Sangat berpotensi bahaya.
c. Fasilitas / sarana kerja yang tidak memenuhi standard minimal, seperti scaffolding tidak aman, pada proses pekerjaan dalam tangki tidak tersedia exhaust blower
d. Terjadi pencemaran dan polusi pada lingkungan kerja, misal debu, tumpahan oli, minyak dan B3 (bahan berbahaya dan beracun)

Cara penggunaan, penyimpanan tabung gas dan tempat penyimpanannya:
a. Jangan meletakkan tabung gas yang mudah terbakar dan tabung yang mendukung kebakaran di dalam ruangan yang sama.
b. Simpan atau jagalah tabung gas di dalam ruangan yang berventilasi baik, yang dibangun dari bahan-bahan yang tidak mudah terbakar (gambar 2.1).

c. Ruangan tersebut tidak boleh terkena sinar matahari secara langsung dan temperatur tabung gas yang disimpan tidak boleh melebihi 400°C.
d. Pada waktu memindahkan tabung gas, jangan menarik, menumpahkan, mendorong atau menggelindingkannya dengan kaki atau membiarkannya bertabrakan dengan benda-benda lain yang dapat menyebabkan goncangan pada tabung gas (gambar 2.2).
e. Ketika menggunakan gas, gunakanlah gas tersebut di tempat yang berventilasi baik, dan jagalah jangan sampai merobohkan tabung gas.

g. Gunakanlah tabung gas yang sesuai untuk gas-gas yang mudah terbakar seperti untuk gas-gas asetilin larut atau gas LP

h. Tutuplah katup tabung gas apabila gas tidak digunakan.

i. Gantilah tabung gas dengan tekanan tertentu yang masih tersisa.

j. Periksalah kebocoran yang mungkin ada sebelum mulai mengelas dan pasang penahan tekanan balik pada tabung gas asetilin yang sesuai.

Bahan Bacaan 2 : Bahaya-Bahaya dalam Pengelasan dan Pencegahannya

Bahaya-bahaya yang dapat terjadi pada proses pengelasan diantaranya: (1) kejutan listrik selama pelaksanaan pengelasan dengan mesin las busur listrik; (2) ledakan karena adanya kebocoran pada gas-gas yang mudah terbakar seperti gas asetilin; (3) cedera pada mata akibat penyinaran; (4) silau nyala api gas; (5) cedera karena asap dan gas yang dihasilkan selama proses pengelasan; (6) kebakaran, ledakan dan luka bakar akibat
percikan terak pengelasan; (7) ledakan tabung asetilin, oksigen, gas CO2 dan gas argon; (8) saat berada didalam ruang tertutup / tangki waspadailah gas hasil pengelasan; (9) gas mulia / Inert gas : gas yang mendesak oksigen sehingga kadar oksigen berkurang dibawah 19,5% sehingga berbahaya bagi pernapasan manusia. Gas tersebut yaitu: Argon (Ar) hasil las TIG/GTAW, CO2 hasil las FCAW.

Letupan yang disebabkan oleh percikan selama pengelasan, serta terak yang ditimbulkan oleh alat potong las atau alat ukur udara busur las menimbulkan berbagai risiko antara lain : cedera pada mata, luka bakar, kebakaran dan percikan. Cara untuk mengatasi letupan dan terak ialah:

b. Jangan menaruh barang-barang yang mudah terbakar di dekat tempat kerja pengelasan atau pemotongan. Misalnya, ketika bekerja menggunakan tabung gas, jauhkan semua benda cair dari tabung itu dan cuci bersih serta bersihkan udaranya sebelum mulai mengelas atau memotong tabung itu. Juga efektif jika membilas gas di dalam tabung dengan nitrogen atau argon setelah bejana itu diisi

a. Bahaya listrik
Sebab-sebab utama kejutan listrik selama pengelasan dengan busur listrik diantaranya:

1) Karena perlu menyalakan kembali dan menjaga kestabilan busur las, maka tegangan listrik AC pada mesin las busur listrik harus dijaga agar tetap tinggi.

2) Isolasi yang tidak efektif karena adanya kerusakan pada pembungkus kabel las.

3) Isolasi yang tidak efektif dari mesin las busur listrik dan terbukanya bidang pengisian pada terminal penghubung kabel mesin las.

4) Isolasi yang tidak efektif pada gagang batang las.
5) Pengelasan busur listrik pada lokasi dikelilingi oleh material konduksi seperti bejana tekan atau struktur dasar ganda dari kapal

Cara-cara mencegah bahaya kejutan listrik selama pengelasan dengan busur listrik:

1) Pencegahan Arus Listrik Mengalir Ke Seluruh Tubuh Manusia
 a) Pakaian kerja harus kering dan tidak boleh basah oleh keringat atau air.
 b) Sarung tangan harus terbuat dari kulit, kering dan tanpa lubang pada ujung jari.
 c) Harus memakai sepatu karet yang seluruhnya terisolasi.
 d) Mesin las busur listrik AC harus memiliki alat penurun tegangan otomatis atau mesin las busur listrik DC tegangannya harus relatif rendah, sekitar 60V.

2) Memastikan Tidak Adanya Kebocoran Arus Listrik
 a) Mesin-mesin las busur listrik itu sendiri, meja kerja las dan benda kerja yang akan dilas harus benar-benar “membumi”.
 b) Jika pembungkus kabel-kabel input atau output sobek dan kawatnya terbuka, maka tutuplah dengan pita isolasi atau ganti seluruh kabelnya.
 c) Isolasi terminal-terminal kabel pada sisi input/output, kabel pada gagang elektroda dan sisi gagang elektroda, dan hubungan pada konektor kabel harus sempurna.
 d) Hubungan kabel-kabel yang ada di meja kerja las, lembar kerja yang akan dilas dan logam dasar dengan benar menggunakan penjepit-penjepit khusus.
 e) Ketika meninggalkan bengkel pengelasan untuk beristirahat, pastikan bahwa batang elektroda las telah dilepaskan dari gagang elektroda (holder).

b. Bahaya Sinar las

Bahaya-bahaya sinar busur las dan nyala api gas diantaranya:

1) Temperatur busur las sama tingginya dengan temperatur permukaan matahari, kira-kira 5000-6000°C, sedangkan temperatur nyala api gas asetilin adalah kira-kira 3100°C.
2) Keduanya menimbulkan radiasi sinar yang kuat sehingga berbahaya bagi mata. Sinar-sinar tersebut meliputi, sinar-sinar yang kasat mata, juga sinar ultraviolet (gelombang elektromagnetik) dan sinar inframerah (thermal) yang tidak kasat mata.

3) Sinar yang ada pada las busur listrik kebanyakan adalah sinar ultraviolet, sedangkan nyala api las memancarkan sinar infrared. Sinar ultraviolet dan sinar infrared menimbulkan kerusakan pada mata dan kulit dapat terbakar seperti terbakar sinar matahari.

Alat-alat pelindung dari sinar yang berbahaya

1) Kaus tangan atau masker pelindung wajah sejenis helm dengan plat-plat baja anti-cahaya dilengkapi dengan jumlah penyaring yang cukup memadai serta kacamata pelindung digunakan ketika mengerjakan las busur listrik atau las gas

2) Pekerja las harus memakai pakaian kerja lengan panjang dan menutupi leher dengan handuk sehingga kulit terlindung dari paparan sinar busur las

3) Pekerja harus merawat kedua matanya dengan meneteskan obat tetes mata dan menggunakan kompres pendingin

4) Untuk melindungi lingkungan pekerja dari sinar-sinar yang berbahaya tersebut, perlu digunakan layar pelindung cahaya

c. Bahaya asap las

Temperatur busur las tingginya kira-kira 5000-6000°c, yang berarti sama dengan temperatur permukaan matahari, sedangkan temperatur nyala api oksiasetilin adalah kira-kira 3200°C. Penguapan logam peleburan terjadi dari ujung batang elektroda las atau kawat las, tetesan-tetesan kecil yang berpindah dan permukaan genangan yang meleleh, sehingga uap air logam bertemperatur tinggi disemburkan ke sekeliling titik pengelasan. Uap air itu cepat menjadi dingin dan melebur di dalam partikel-partikel kecil berdiameter 0,1-10µm. Walaupun kelihatannya seperti asap biasa, asap gas las ini sebenarnya mengandung partikel-partikel murni. Ukuran dan unsur-unsur di dalam partikel-partikel ini bergantung pada material yang terkandung di dalam batang las, kawat las dan jenis material dasarnya. Karena ukuran partikel-

Apabila asap las itu diisap dalam waktu lama, maka partikel-partikel murni akan terakumulasi di dalam paru-paru dan dapat menyebabkan kondisi kronis yang disebut “PNEUMOKONIOSIS” (Radang paru-paru). Radang paru-paru pada tahap awal hampir tidak menunjukkan gejala penyakit yang subyektif, tetapi fungsi paru-paru semakin memburuk seiring dengan berkembangnya gejala penyakit itu, ditandai dengan kesulitan bernapas. Sampai sekarang masih belum ada pengobatan yang dapat mengembalikan paru-paru seperti dalam kondisi kesehatan semula, selain itu dalam beberapa kasus pasien meninggal dunia karena berbagai komplikasi. Selama pengelasan, gas-gas yang beracun bagi tubuh manusia bisa timbul selain asap-asap las. Misalnya:

a. Bila 100% gas CO2 digunakan sebagai gas pelindung untuk las MAG, maka gas CO2 yang dipanaskan dengan temperatur tinggi pada busur las akan larut dengan formula sebagai berikut untuk menghasilkan CO (karbon monoksida)

\[2CO_2 \rightarrow 2CO + O_2\]

b. Kepadatan CO ini bergantung pada jarak dari titik kejadian, dan 700 ppm diluar helm serta 50 ppm didalam helm pada titik 30 cm dari titik kejadian.

c. Oksigen dan nitrogen bereaksi dengan busur las panas terhadap oksigen dan dikonversikan menjadi Nox (NO-NO2).

d. Sinar ultraviolet yang ditimbulkan dari reaksi busur las terhadap oksigen, menghasilkan ozon (O2).

e. Oli dan cat yang melekat pada daerah las-lasan, yang dilarutkan oleh busur las dan nyala api gas, menghasilkan gas-gas organik.
Cara Mengatasi Asap Dan Gas Las ialah sebagai berikut:

a. Posisi tubuh pada saat pengelasan diatur sedemikian rupa sehingga meminimalisir asap gas langsung mengarah ke welder (gambar 2.3)

<table>
<thead>
<tr>
<th>Gambar 2.3</th>
<th>Posisi tubuh sewaktu mengelas (a) kurang tepat (b) tepat (Sumber: Blunt & Balchin, 2002:55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
</tbody>
</table>

b. Asap las harus dibuang dengan alat lebih dari sekadar ventilasi alami. Alat penyedot asap las lokal (gambar 2.4) dan alat pembuang gas harus dipasang untuk melenyapkan secara paksa gas dan asap las.

<table>
<thead>
<tr>
<th>Gambar 2.4</th>
<th>Penyedot asap las lokal (Sumber: Blunt & Balchin, 2002:57)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Jika alat penyedot asap dan pembuang gas tidak dapat dipasang, maka gunakanlah alat bantu pernapasan. Bila pengelasan dilakukan pada lokasi yang sempit dan kurang ventilasi, gunakanlah masker pengisi udara (oksigen).
d. Gunakanlah metode pengelasan, elektroda las atau kawat las yang menghasilkan sedikit asap las. Misalnya, jika campuran gas Ar+CO₂ digunakan untuk las MAG sebagai las pelindung, maka jumlah asap lasnya dapat dikurangi banyak.

e. Sedapat mungkin gunakanlah mesin las otomatis, sehingga operator mesin dapat mengambil jarak lebih jauh dari daerah pengelasan.

Jenis-jenis asap dan sumber serta pengaruhnya terhadap tubuh manusia dapat dilihat pada tabel berikut.

<table>
<thead>
<tr>
<th>Tabel 2.1</th>
<th>Tipe dan Sumber Asap Las Serta Pengaruhnya Terhadap Kesehatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipe Asap</td>
<td>Sumber</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Alumunium</td>
<td>Komponen alumunium pada bebarapa paduan seperti Inconels, Tembaga, Zinc, Baja, Magnesium, Kuningan and Bahan tambah las (filler).</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Ditemukan pada tembaga, magnesium, paduan alumunium dan kontakter listrik.</td>
</tr>
<tr>
<td>Tembaga</td>
<td>Logam paduan seperti Monel, kuningan, perunggu. Juga beberapa batang las.</td>
</tr>
<tr>
<td>Oksida Besi</td>
<td>Kontaminan utama di semua besi atau baja proses pengelasan.</td>
</tr>
<tr>
<td>Bahan</td>
<td>Dampak Kesehatan</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Molybden</td>
<td>Baja paduan, besi, baja stenless, dan paduan nikel</td>
</tr>
<tr>
<td>Nikel</td>
<td>Baja Stenlis (Stainless steel), Inconel, Monel, Hastelloy dan bahan paduan tinggi lainnya (Other high-alloy materials), batang las dan baja berlapis.</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Beberapa baja paduan, baja stainless, dan paduan nikel</td>
</tr>
<tr>
<td>Zinc</td>
<td>Logam galvanis dan yang dicat</td>
</tr>
</tbody>
</table>

(Sumber: https://work.alberta.ca)

Bahan Bacaan 3 : Alat Pelindung Diri pada Proses Pengelasan TIG/GTAW

Perbuatan tidak aman (berbahaya), merupakan suatu pelanggaran terhadap prosedur keselamatan kerja yang memberikan peluang terhadap terjadinya kecelakaan. Yang termasuk perbuatan tidak aman diantaranya:

1. Tidak memakai APD (Alat Pelindung Diri) standard (Gambar 2.5) yaitu : Auto Darkening Helmet (gambar 2.6), sabuk pengaman, stiwel dan Safety shoes (2.7), sarung tangan kerja (gambar 2.8), leather apron (gambar 2.9) dan APD sesuai kondisi bahaya kerja yang dihadapi saat bekerja pengelasan.
2. Melakukan tindakan ceroboh / tidak mengikuti prosedur kerja yang berlaku bidang pengelasan.
3. Pengetahuan dan ketrampilan pelaksana yang tidak sesuai dengan pekerjaan yang dibebankan padanya.
4. Mental dan fisik yang belum siap untuk tugas-tugas yang diembannya
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis APD</th>
<th>Jenis Pekerjaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Welder</td>
</tr>
<tr>
<td>1.</td>
<td>Helm pengaman/auto darkening helmet</td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td>Keteplak kerja</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Sabuk pengaman untuk ketinggian > 2 m</td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td>Stiwel</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Safety shoes</td>
<td>X</td>
</tr>
<tr>
<td>6.</td>
<td>Sarung tangan kulit panjang</td>
<td>X</td>
</tr>
<tr>
<td>7.</td>
<td>Sarung tangan kulit pendek</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Apron kulit</td>
<td>X</td>
</tr>
<tr>
<td>9.</td>
<td>Jaket dan celana las</td>
<td>X</td>
</tr>
<tr>
<td>10.</td>
<td>Welding respirator</td>
<td>X</td>
</tr>
<tr>
<td>11.</td>
<td>Selubung tangan</td>
<td>X</td>
</tr>
<tr>
<td>12.</td>
<td>Toxid respirator</td>
<td>X</td>
</tr>
</tbody>
</table>
Gambar 2.5 Alat Pelindung Diri Welder (Sumber: http://www.millerwelds.com) (Sunaryo, 2009:37)

Gambar 2.6 Jenis-jenis Alat Pelindung Diri (APD): (a) Auto-Darkening Helmet, (b) Sepatu pengaman; (c) Sarung tangan las; dan (d) Apron kulit (Sumber: http://envirosafetyproduct.com)

(a) (c)
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Keselamatan dan Kesehatan Kerja pada Proses Las TIG/GTAW ini? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam Materi pembelajaran ini? Sebutkan!

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!

Aktivitas Pembelajaran 1 : Mengamati Lingkungan Kerja dan Alat Keselamatan Kerja (1 JP)
Saudara diminta melakukan pengamatan di bengkel las tempat akan dilaksanakan praktikum pengelasan TIG/GTAW mengenai lingkungan kerja dan alat keselamatan kerja misalkan Alat Pemadam Api Ringan (APAR), exhaust fan dan lain-lain. Hasil pengamatan dideskripsikan dan dituangkan dalam laporan tertulis (LK-01) disertai denah sederhana bengkel las lengkap posisi alat keselamatan kerja yang ada di bengkel las TIG/GTAW. Untuk membantu saudara mengisi LK-01, dapat dipandu oleh pertanyaan berikut ini:
1. Alat keselamatan kerja apa saja yang tersedia di bengkel las saudara?
2. Sebutkan spesifikasi masing-masing alat keselamatan kerja tersebut!
3. Berapa jumlah masing-masing alat keselamatan kerja tersebut?
4. Bagaimana kondisi masing-masing alat keselamatan kerja tersebut, apakah masih berfungsi dengan baik atau keadaannya sudah rusak?

Aktivitas Pembelajaran 2 : Mengamati Potensi Bahaya Proses Pengelasan TIG/GTAW (1 JP)
Saudara diminta melakukan pengamatan mengenai potensi bahaya yang dapat timbul dari proses pengelasan TIG/GTAW di bengkel las TIG/GTAW terutama bahaya listrik, bahaya gas, bahaya sinar las dan bahaya asap las. Hasil pengamatan di diskusikan dengan sesama peserta diiklat untuk kemudian diambil kesimpulan bersama mengenai potensi bahaya yang ditimbulkankan proses pengelasan las TIG/GTAW dan situangkan dala LK-02. Untuk membantu saudara mengisi LK-02, dapat dipandu oleh pertanyaan berikut ini:
1. Sebutkan jenis-jenis potensi bahaya yang ada di bengkel las?
2. Jelaskan secara rinci masing-masing potensi bahaya tersebut!

Aktivitas Pembelajaran: Mengidentifikasi Alat Pelindung Diri (1 JP)
Saudara diminta mengidentifikasi Alat Pelindung Diri (APD) yang diperlukan pada proses pengelasan TIG/GTAW dari sumber-sumber teori yang ada. Hasil identifikasi kemudian dituangkan dalam daftar tertulis (LK-03). Kemudian didiskusikan dengan teman satu kelompok mengenai fungsi penggunaannya. Untuk membantu saudara mengisi LK-03, dapat dipandu pertanyaan berikut ini:
1. Sebutkan alat-alat pelindung diri yang diperlukan pada proses pengelasan TIG/GTAW!
2. Jelaskan fungsi penggunaan dari alat-alat pelindung diri yang diperlukan pada proses pengelasan TIG/GTAW!

Setelah LK-03 terisi, saudara dapat melanjutkan ke Aktivitas Pembelajaran 4.

Aktivitas Pembelajaran 4: Menganalisis Ketersediaan dan Kondisi Alat Pelindung Diri (1 JP)
Saudara diminta melakukan pengamatan di bengkel las TIG/GTAW mengenai ketersediaan dan kondisi APD yang ada. Hasil pengamatan dibandingkan dengan (LK-03). Kemudian didiskusikan beserta peserta diklat yang lain mengenai keamanan proses pengelasan berdasarkan hasil pengamatan APD yang ada. Hasil analisis kemudian dituangkan dalam daftar tertulis LK-04.. Untuk mengisi LK-04 saudara akan dipandu dengan beberapa pertanyaan berikut:
1. Sebutkan alat pelindung diri yang harus ada di bengkel las TIG/GTAW!
2. Sebutkan alat pelindung diri di bengkel las tempat saudara praktikum!
3. Sebutkan berapa jumlah alat pelindung diri yang tersedia!
4. Bagaimana kondisi masing-masing alat pelindung diri tersebut, apakah masih baik atau sudah rusak?

E. Rangkuman

Untuk menghindari atau mengeliminir terjadinya kecelakaan perlu penguasaan pengetahuan keselamatan kesehatan kerja. Keselamatan kesehatan kerja paling banyak membahas adanya kecelakaan dan perbuatan yang mengarah pada tindakan yang mengandung bahaya. Tempat kerja harus jauh dari kondisi tidak aman (berbahaya), yang merupakan kondisi fisik atau keadaan yang berbahaya yang mungkin dapat langsung mengakibatkan terjadinya kecelakaan.

Potensi bahaya dari pengelasan terdiri dari bahaya listrik, sinar las dan asap las. Pemakaian APD dan pelaksanaan kerja sesuai prosedur dapat mencegah dampak dari bahaya pengelasan. Setiap orang yang bekerja di bidang las harus memahami dan melaksanakan K3 pada setiap kegiatannya.
F. Tes Formatif

1. Jelaskan pentingnya pemahaman keselamatan dan kesehatan kerja di bidang pengelasan!

 Jawaban

 ……
 ……
 ……
 ……
 ………

2. Jelaskan kondisi-kondisi tidak aman di tempat kerja!

 Jawaban

 ……
 ……
 ……
 ……
 ………

3. Jelaskan bahaya apa saja yang diakibatkan sinar las!

 Jawaban

 ……
 ……
 ……
 ………

4. Jelaskan bagaimana saja cara mengatasi bahaya asap dan gas las!

 Jawaban

 ……
 ……
 ……
 ………
5. Jelaskan Alat Pelindung Diri (APD) untuk seorang *welder*!

Jawaban

```

```

```

```

```

```

```
G. Kunci Jawaban

1. Jelaskan pentingnya pemahaman keselamatan dan kesehatan kerja di bidang pengelasan!

**Jawaban**


2. Jelaskan kondisi-kondisi tidak aman di tempat kerja!

**Jawaban**

Kondisi tidak aman (berbahaya), merupakan kondisi fisik atau keadaan yang berbahaya yang mungkin dapat langsung mengakibatkan terjadinya kecelakaan. Beberapa kondisi tidak aman diantaranya:

a. Lokasi kerja yang kumuh dan kotor
b. Alokasi personil / pekerja yang tidak terencana dengan baik, sehingga pada satu lokasi dipenuhi oleh beberapa pekerja. Sangat berpotensi bahaya

c. Fasilitas / sarana kerja yang tidak memenuhi standard minimal, seperti scaffolding tidak aman, pada proses pekerjaan dalam tangki tidak tersedia exhaust blower
d. Terjadi pencemaran dan polusi pada lingkungan kerja, misal debu, tumpahan oli, minyak dan B3 (bahan berbahaya dan beracun)

3. Jelaskan bahaya apa saja yang diakibatkan sinar las!

**Jawaban**

Proses pengelasan menimbulkan radiasi sinar yang kuat sehingga berbahaya bagi mata. Sinar-sinar tersebut meliputi, sinar-sinar yang kasat mata, juga sinar ultraviolet (gelombang elektromagnetik) dan sinar inframerah (thermal) yang tidak kasat mata.

Sinar yang ada pada las busur listrik kebanyakan adalah sinar ultraviolet, sedangkan nyala api las memancarkan sinar infrared. Sinar ultraviolet dan sinar infrared...
menimbulkan kerusakan pada mata dan kulit dapat terbakar seperti terbakar sinar matahari.

4. Jelaskan bagaimana saja cara mengatasi bahaya asap dan gas las!

**Jawaban**

Cara Mengatasi Asap Dan Gas Las ialah sebagai berikut:

a. Posisi tubuh pada saat pengelaskan diatur sedemikian rupa sehingga meminimalisir asap gas langsung mengarah ke welder.

b. Asap las harus dibuang dengan alat lebih dari sekadar ventilasi alami. Alat penyedot asap las lokal dan alat pembuang gas harus dipasang untuk melenyapkan secara paksa gas dan asap las.

c. Jika alat penyedot asap dan pembuang gas tidak dapat dipasang, maka gunakanlah alat bantu pernapasan. Bila pengelaskan dilakukan pada lokasi yang sempit dan kurang ventilasi, gunakanlah masker pengisi udara (oksigen).

d. Gunakanlah metode pengelasan, elektroda las atau kawat las yang menghasilkan sedikit asap las. Misalnya, jika campuran gas Ar+CO$_2$ digunakan untuk las MAG sebagai las pelindung, maka jumlah asap lasnya dapat dikurangi banyak.

e. Sedapat mungkin gunakanlah mesin las otomatis, sehingga operator mesin dapat mengambil jarak lebih jauh dari daerah pengelasan.
5. Jelaskan Alat Pelindung Diri (APD) untuk seorang *welder*!

**Jawaban**

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis APD</th>
<th>Jenis Pekerjaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Welder</td>
</tr>
<tr>
<td>1</td>
<td>Helm pengaman/<em>auto darkening helmet</em></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Keteplak kerja</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Sabuk pengaman untuk ketinggian &gt; 2 m</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Stiwel</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td><em>Safety shoes</em></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Sarung tangan kulit panjang</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Sarung tangan kulit pendek</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Apron kulit</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Jaket dan celana las</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td><em>Welding respirator</em></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Selubung tangan</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td><em>Toxid respirator</em></td>
<td>X</td>
</tr>
</tbody>
</table>
Lembar Kerja Kegiatan Pembelajaran 2 (KP-2)

LK - 00

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Keselamatan dan Kesehatan Kerja pada Proses Las TIG/GTAW? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
   …………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
   …………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”

6. Apa bukti yang harus diunjukkjerakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!
   …………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”
………………………………………………………………………………………………………………………………………”
Form LK-01 Lembar Pengamatan Lingkungan Kerja dan Alat Keselamatan Kerja Proses Las *TIG/GTAW*

<table>
<thead>
<tr>
<th>No.</th>
<th>Alat Keselamatan Kerja</th>
<th>Spesifikasi</th>
<th>Jml</th>
<th>Kondisi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rusak</td>
</tr>
</tbody>
</table>

Denah Ruang Las *TIG/GTAW*
Form LK-02 Lembar Pengamatan Potensi Bahaya pada Proses Pengelasan

*TIG/GTAW*

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Bahaya</th>
<th>Rincian Potensi Bahaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Listrik</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Gas pelindung</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Sinar las</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Asap las</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>...............</td>
<td></td>
</tr>
</tbody>
</table>
Form LK-03 Lembar Identifikasi Alat Pelindung Diri pada Proses Pengelasan

**TIG/GTAW**

<table>
<thead>
<tr>
<th>No</th>
<th>Alat Pelindung Diri yang harus ada</th>
<th>Fungsinya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form LK-04 Lembar Pengamatan Ketersediaan dan Kondisi Alat Pelindung Diri pada Proses Pengelasan TIG/GTAW

<table>
<thead>
<tr>
<th>No.</th>
<th>APD yang harus ada</th>
<th>APD yang tersedia</th>
<th>Jml</th>
<th>Kondisi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rusak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KEGIATAN PEMBELAJARAN 3 : PERALATAN PENGELASAN PADA PROSES LAS TIG/GTAW

A. Tujuan
Setelah proses diklat, dengan memperhatikan macam-macam peralatan las peserta diklat menentukan dan memasang peralatan las TIG/GTAW dengan benar.

B. Indikator Pencapaian Kompetensi
Menentukan peralatan pengelasan termasuk seluruh kabel dihubungkan dengan aman dan benar berdasarkan prosedur operasi standar.
1. Peralatan pengelasan TIG/GTAW dapat ditentukan dengan benar.
2. Peralatan pengelasan TIG/GTAW dapat dipasang dengan benar.

C. Uraian Materi

Bahan Bacaan 1 : Rangkaian Mesin Las TIG/GTAW

Gas Tungsten Arc Welding (TIG) atau Gas Tungsten Arc Welding (GTAW) merupakan istilah yang dikenal luas di Europe, dikenal juga dengan istilah Tungsten Inert Gas (TIG) di Amerika, dan istilah Wolfram Inert Gas (WIG) di Jerman adalah proses pengelasan melalui pemanfaatan busur listrik antara elektroda tungsten tidak terumpan dengan bahan yang dilas. Daerah HAZ, logam cair dan elektroda tungsten terlindung dari kontaminasi atmosfer oleh selimut inert gas. Gas inert (biasanya argon) bersifat kurang atau bahkan tidak aktif terhadap reaksi kimia. Proses Las TIG/GTAW dapat menghasilkan suhu sampai 35000°F (19426°C).
Mesin las TIG/GTAW mempunyai dua sistem pendinginan yaitu pendinginan udara dan pendinginan air. Secara skematik mesin las TIG/GTAW mempunyai empat bagian utama (gambar 3.1). yaitu:

a. sumber tenaga (power source),
b. sistem pendinginan untuk yang berpendingin air (water cooled),
c. gas pelindung (shielding gas), dan
d. torch.
Secara utuh rangkaian mesin las TIG/GTAW dapat dilihat pada gambar berikut.

Gambar 3.1 Skema rangkaian mesin las TIG/GTAW (Sumber: Muncaster, 1991:15)

Gambar 3.2 Rangkaian Mesin Las TIG/GTAW (Sumber: http://TIGweldmachine.com)
Keterangan:

1. mesin las/sumber tenaga;
2. pedal las;
3. logam induk;
4. klem masa
5. torch;
6. selang masuk air;
7. selang keluar air;
8. Sistem sirkulasi air;
9. gas pelindung.

**Bahan Bacaan 2 : Torch**

*Torch* pada las TIG/GTAW harus bersifat isolasi listrik dan nyaman digenggam tangan. *Torch* berfungsi untuk memegang elektroda tidak terumpan dengan kolet dan menyalurkan gas pelindung melalui nozel keramik berbagai ukuran. Terdapat dua tipe torch yaitu berpendingin air dan berpendingin udara. Arus yang diizinkan untuk torch berpendingin air (gambar 3.3) adalah <200 A, sedangkan torch yang berpendingin udara (gambar 3.4) maksimum 200 A.

<table>
<thead>
<tr>
<th>Gambar 3.3</th>
<th>Torch berpendingin air (Sumber: Muncaster, 1991:18)</th>
</tr>
</thead>
</table>

**Gambar 3.3**

Torch berpendingin air (Sumber: Muncaster, 1991:18)
Pada saat ini material torch diperbarui seiring dengan diketemukannya material plastik modern dan karet sintetis yang lebih ringan dan berisolasi tinggi membuat torch menjadi lebih kecil, ringan dan mudah digenggam. Pengelasan TIG/GTAW secara manual mengharuskan gerakan tangan yang konstan, jadi torch yang ringan merupakan suatu keuntungan bagi welder. Skematik fungsi torch dapat dilihat pada gambar di bawah ini:

Gambar 3.4  Torch berpendingin udara (Sumber: Muncaster, 1991:19)
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG
(TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM
Besarnya aliran gas mempengaruhi efek pendinginan pada torch. Untuk alasan ekonomi, biasanya dipilih aliran gas minimum tetapi hal ini mengurangi efek pendinginan. Hal ini berarti torch menjadi panas dan tidak nyaman pada saat digunakan untuk pengelasan jalur/layer selanjutnya, sehingga dibutuhkan pendinginan air. Untuk lab yang sibuk, maka torch berpendingin air sangat disarankan. Gambar 3.3 menunjukan torch berpendingin air. Aliran air pendingin yang dibutuhkan sangat kecil (1,5 l/min). Dan untuk alasan ekonomi, pendinginan air yang baik adalah yang mempunyai sistem sirkulasi. Komponen logam torch biasanya harus terbuat dari tembaga dan kuningan.
Gambar di bawah ini menunjukkan bagian-bagian torch secara rinci.

<table>
<thead>
<tr>
<th>Gambar 3.7</th>
<th>Bagian-bagian torch las TIG/GTAW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Sumber: <a href="http://schweissaufsicht.ansa.ch/WIG/WIG1.html">http://schweissaufsicht.ansa.ch/WIG/WIG1.html</a>)</td>
</tr>
</tbody>
</table>

Keterangan:
1) Tutup keramik/nosel gas
2) Tungsten
3) Kolet
4) Tutup kepala
5) Lorong gas pelindung
6) Tombol pembakar
7) Saluran gas pelindung
8) Saluran air pendingin masuk
9) Saluran air pendingin keluar
10) Kabel arus las


Tahapan pemasangan Torch Las GTAW/TIG adalah sebagai berikut:

a. Badan kolet dipasang dan dikencangkan dengan tangan.
b. Nosel gas dipasang dan dikencangkan dengan tangan.
c. Kolet dimasukan.
d. Elektroda tungsten dimasukan, keluarkan ujung elektroda sepanjang 2-3 kali diameter elektroda dari arah belakang.
e. Tutup torch dipasang dan dikencangkan.

<table>
<thead>
<tr>
<th>Gambar 3.8</th>
<th>Pemasangan kolet dan nosel (Sumber: Sunaryo, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Gambar Kolet dan Nosel" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gambar 3.9</th>
<th>Pemasangan elektroda dan tutup (Sumber: Sunaryo, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image2.png" alt="Gambar Elektroda dan Tutup" /></td>
<td></td>
</tr>
</tbody>
</table>

2 sampai 3 kali diameter elektrode
Torch memerlukan perawatan berkala untuk menjaga fungsinya. Gambar 3.9 Perawatan tersebut diantaranya:

a. Nosel (No. 6 dan 9) yang terbuat dari keramik ini harus dijaga agar tidak terkena benturan atau jatuh karena rentan pecah. Pada saat pemasangan cukup menggunakan tangan tanpa bantuan alat lain. Dan yang terpenting gunakan ukuran nosel sesuai ketentuan dan keperluan.

b. Dudukan kolet dan gas orifice (No 5 dan 8) pada saat pemasangan cukup menggunakan tangan atau alat bantu ringan. Bersihkan saluran gas agar tidak tersumbat.

d. Penutup kepala (2) beserta O-ringnya dijaga agar tidak terjatuh, begitu juga pada saat pemasangan dan pelepasan cukup menggunakan tangan.

e. Kepala torch (1) dan rumahnya (11) dijaga agar tidak longgar, seal tape-nya diperiksa untuk mencegah terjadinya kebocoran arus dan atau gas.

f. Tombol on/off (10) selalu diecek fungsinya, apabila dirasakan ada keanehan dan tidak berfungsi semestinya maka harus segera diperbaiki.

Bahan Bacaan 3 : Regulator Gas

Gambar 3.11  
Prinsip Kerja Regulator Gas TIG/GTAW  
(Sumber: http://commons.wikimedia.org/wiki/File:Druckregler.png)

Gambar 3.12  
Regulator Gas dengan Manometer Jarum
Regulator gas dengan flowmeter gelas pengukur terdiri dari:

1) Manometer tekanan isi tabung gas
2) Flowmeter tekanan kerja
3) Katup pengatur aliran kerja gas
4) Tanda pengenal macam gas
5) Tanda warna gas

Prinsip kerja regulator dengan manometer dan gelas pengukur hampir sama, yaitu regulator dipasang pada tabung gas pastikan katup pengatur dalam keadaan off atau tidak menekan, kemudian buka katup tabung gas untuk mengetahui isi tabung. Aliran kerja gas dibuka oleh katup pengatur (3) sehingga debit gas terbaca oleh jarum dan gelas pengukur.
Regulator gas perlu dirawat agar dapat berfungsi dengan baik pada waktu dipakai. Perawatan regulator las dapat dilakukan dengan:

a. Hindari jatuh dan terkena benturan
b. Dijaga agar selalu bersih dan kering
d. Lepas dan simpan di tempat yang kering dan aman jika tidak digunakan.

D. Aktivitas Pembelajaran

Aktivitas Pengantar: Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Peralatan Pengelasan pada Proses Las TiG/GTAW ini? Sebutkan!
2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!
3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!

Aktivitas Pembelajaran 1 : Menganalisis Rangkaian Mesin Las TIG/GTAW (2 JP)

Saudara diminta untuk melakukan pengamatan di bengkel las TIG/GTAW mengenai mesin las TIG/GTAW beserta peralatannya. Bagian rangkaian yang diamati diantaranya sumber tenaganya (power source), sistem pendinginan, saluran gas pelindung (Shielding gas) dan rangkaian torch. Hasil pengamatan dituangkan dalam laporan tertulis (LK-01) berupa bagian-bagian rangkaian, spesifikasi bagian-bagian, kondisi yang ada dan gambar sederhana rangkaian mesin las TIG/GTAW yang ada. Untuk membantu saudara mengisi LK-01, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan nama-nama bagian rangkaian mesin las TIG/GTAW yang ada di bengkel las!
2. Jelaskan fungsi masing-masing bagian tersebut!
3. Jelaskan pula kondisinya!


Aktivitas Pembelajaran 2 : Menganalisis Bagian-bagian Torch TIG/GTAW (2 JP)

Saudara diminta untuk melakukan pengamatan mengenai bagian-bagian kepala torch. Hasil pengamatan dituangkan dalam laporan tertulis (LK-02) dan didiskusikan beserta peserta diklat lainnya bagaimana cara merakit sekaligus memasang elektroda tungsten yang benar. Untuk membantu saudara mengisi LK-02, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan bagian-bagian kepala torch!
2. Jelaskan fungsi masing-masing bagian torch tersebut!


E. Rangkuman

tekanan kerja gas. Regulator gas Argon ada dua jenis, yaitu yang menggunakan manometer jarum dan flowmeter gelas ukur.

F. Tes Formatif

1. Sebutkan bagian utama perlengkapan las TIG/GTAW!
   
   **Jawaban**
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................

2. Jelaskan fungsi utama torch!
   
   **Jawaban**
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................

3. Sebutkan bagian-bagian kepala torch!
   
   **Jawaban**
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................

   
   **Jawaban**
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................
   .........................................................................................................................................................

   ............................
   ............................
   ............................
5. Jelaskan fungsi regulator gas!

Jawaban

6. Sebutkan dua macam regulator gas TIG/GTAW!

Jawaban
G. Kunci Jawaban

1. Sebutkan bagian utama perlengkapan las GTAW!
   **Jawaban**
   Mesin las GTAW mempunyai dua sistem pendinginan yaitu pendinginan udara dan pendinginan air. Secara skematik mesin las GTAW mempunyai empat bagian utama yaitu:
   a. sumber tenaga (*power source*),
   b. sistem pendinginan untuk yang berpendingin air (*water cooled*),
   c. gas pelindung (*shielding gas*), dan
e. *torch*.

2. Jelaskan fungsi utama *torch*!
   **Jawaban**
   *Torch* berfungsi untuk memegang elektroda tidak terumpan dengan kolet dan menyalurkan gas pelindung melalui nozel keramik berbagai ukuran.

3. Sebutkan bagian-bagian kepala *torch*!
   **Jawaban**
   Bagian-bagian kepala *torch* diantaranya
   a. Nosel gas
   b. Badan kolet
   c. Kolet
d. Tungsten
e. Tutup kepala *torch*

4. Jelaskan bagaimana cara memasang elektroda tungsten dengan benar pada kepala *torch*.
   **Jawaban**
   Tahapan pemasangan *Torch* Las GTAW/TIG adalah sebagai berikut:
   a. Badan kolet dipasang dan dikencangkan dengan tangan.
b. Nosel gas dipasang dan dikencangkan dengan tangan.
c. Kolet dimasukan.
d. Elektroda tungsten dimasukan, keluarkan ujung elektroda sepanjang 2-3 kali diameter elektroda dari arah belakang.
e. Tutup **torch** dipasang dan dikencangkan.

5. Jelaskan fungsi regulator gas!

**Jawaban**
Regulator berfungsi untuk mengetahui tekanan botol dan mengatur tinggi rendahnya tekanan gas yang akan digunakan.

6. Sebutkan dua macam regulator gas GTAW!

**Jawaban**
Ada dua macam regulator las GTAW yang dibedakan dari flowmeternya. Yang pertama berbentuk manometer dan yang kedua berbentuk gelas pengukur dengan bola baja sebagai indikatoriannya.
Lembar Kerja Kegiatan Pembelajaran 3 (KP-03)

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Peralatan Pengelasan pada Proses Las TIG/GTAW? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditergetkan? Jelaskan!

.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
Form LK-01 Lembar Pengamatan Rangkaian Mesin Las TIG/GTAW

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Bagian</th>
<th>Fungsi bagian</th>
<th>Kondisi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rangkaian Mesin ke-1

Skema Rangkaian Mesin Las TIG/GTAW
Form LK-02 Lembar Pengamatan Bagian-Bagian Kepala Torch

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Bagian</th>
<th>Fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catatan hasil diskusi
Form LK-01.P Memasang Rangkaian Mesin Las

A. Persiapan Alat dan Bahan
   1. Mesin Las TIG/GTAW disiapkan
   2. Kabel torch disiapkan
   3. Kabel massa disiapkan
   4. Regulator las disiapkan
   5. Tabung gas pelindung disiapkan
   6. Sistem pendingin disiapkan
   7. Selang air in dan out disiapkan
   8. Kunci-kunci pas disiapkan
   9. Gambar kerja disiapkan

B. Sikap dan Keselamatan Kerja
   1. SOP menggunakan perkakas tangan dilaksanakan
   2. Alat pelindung diri dipakai
   3. Bekerja dengan bersih dan rapi
   4. Alat dan tempat kerja dibersihkan setelah selesai praktik

C. Proses Kerja
   1. Perhatikan gambar kerja, amati rangkaian mesin las TIG/GTAW
   2. Pasang kabel torch pada mesin las TIG/GTAW
   3. Pasang kabel massa pada mesin las TIG/GTAW
   4. Hubungkan pedal torch (optional) ke mesin las TIG/GTAW
   5. Hubungkan selang air out dari mesin las TIG/GTAW ke system pendingin
   6. Hubungkan selang air in dari system pendingin ke torch
   7. Pasang regulator gas pada tabung gas
   8. Hubungkan selang gas dari regulator gas ke mesin las
D. Hasil Kerja

Hasil kerja sesuai dengan gambar kerja rangkaian mesin las TIG/GTAW

E. Gambar Kerja

Rangkaian Mesin Las TIG/GTAW
### F. Form Laporan Praktikum

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Judul Praktikum</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Nama Peserta</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Kelas</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Waktu Praktikum</strong></td>
<td></td>
</tr>
</tbody>
</table>

### I. Bahan

1. (Sebutkan bahan praktikum yang digunakan terutama bahan pengisi dan elektroda tungsten)
2. .................................................................
3. Dst.

### II. Peralatan

1. (Sebutkan peralatan kerja yang digunakan)
2. .................................................................
3. Dst.

### III. Keselamatan Kerja

1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. .................................................................
3. Dst.

### IV. Proses Kerja
1. (Uraikan tahapan kerja yang digunakan)

2. .................................................................

3. Dst.

V Hasil Kerja

1. (Uraikan hasil kerja yang diinginkan)

2. .................................................................

3. Dst.

VI Gambar Kerja
Form LK-02.P Memasang Bagian-Bagian Torch dan Elektroda Tungsten

A. Persiapan Alat dan Bahan
1. Torch TIG/GTAW disiapkan
2. Tungsten elektroda EWTH-2 dia. 2.4 dengan kode warna merah
3. Gambar kerja disiapkan

B. Sikap dan Keselamatan Kerja
1. SOP merakit bagian-bagian torch dilaksanakan
2. SOP memasang Tungsten electrode dilaksanakan
3. Alat pelindung diri dipakai
4. Bekerja dengan bersih dan rapi
5. Alat dan tempat kerja dibersihkan setelah selesai praktik

C. Proses Kerja
1. Perhatikan gambar kerja, amati gambar rangkaian torch
2. Bongkar bagian bagian torch dengan langkah sebagai berikut
   a. Buka bagian (6) nosel keramik dari body torch
   b. Buka penutup (2) dari body torch
   c. Buka bodi kolet (5) dari body torch
   d. Lepaskan kolet (4) dari body kolet
3. Merakit bagian-bagian torch sekaligus memasang tungsten elektroda
   a. Pasang bodi kolet (5) ke body torch
   b. Pasang nosel keramik (6) ke body torch
   c. Pasang kolet (4) ke body kolet
   d. Pasang elektroda tungsten ke kolet
   e. Pasang penutup (2) ke body troch
4. Melepas tungsten dan memasangnya kembali untuk keperluan pengasahan.
5. Membersihkan dan merapihkan kembali peralatan dan ruang praktikum.
D. Hasil Kerja
Hasil kerja sesuai dengan gambar kerja rangkaian mesin las TIG/GTAW

E. Gambar Kerja
Bagian-bagian torch

![Diagram of torch components]

1. Handle
2. Nosel
3. Bodi kolet
4. Kolet tungsten
5. Tutup
**F. Form Laporan Praktikum**

<table>
<thead>
<tr>
<th>Judul Praktikum</th>
<th>:______________________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta</td>
<td>:______________________________________________</td>
</tr>
<tr>
<td>Kelas</td>
<td>:______________________________________________</td>
</tr>
<tr>
<td>Waktu Praktikum</td>
<td>:______________________________________________</td>
</tr>
</tbody>
</table>

**I. Bahan**

1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)
2. .......................................................... ..........................................................
3. Dst.

**II. Peralatan**

1. (Sebutkan peralatan kerja yang digunakan)
2. .......................................................... ..........................................................
3. Dst.

**III. Keselamatan Kerja**

1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. .......................................................... ..........................................................
3. Dst.

**IV. Proses Kerja**
<table>
<thead>
<tr>
<th>V</th>
<th>Hasil Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Uraikan hasil kerja yang diinginkan)</td>
</tr>
<tr>
<td>2.</td>
<td>..................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI</th>
<th>Gambar Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KEGIATAN PEMBELAJARAN 4 : ELEKTRODA TUNGSTEN, BAHAN TAMBAH (FILLER ROD) DAN GAS PELINDUNG PADA PROSES LAS TIG/GTAW

A. Tujuan
Setelah proses diklat, dengan memperhatikan logam induk yang akan dilas dan prosedur pengelasan peserta diklat dapat menentukan jenis elektroda tungsten, bahan pengisi dan gas pelindung dengan benar.

B. Indikator Pencapaian Kompetensi
Menganalisis jenis–jenis elektroda tungsten yang dipergunakan berdasarkan prosedur pengelasan sesuai dengan SKKNI
1. Jenis-jenis elektroda tungsten yang dipergunakan dapat dianalisis berdasarkan prosedur pengelasan sesuai dengan SKKNI.
2. Jenis bahan pengisi yang akan digunakan dapat ditentukan dengan benar.
3. Jenis gas pelindung yang akan digunakan dapat ditentukan dengan benar.

C. Uraian Materi
Bahan Bacaan 1 : Elektroda Tungsten
Elektroda TIG/GTAW merupakan penghubung terakhir antara sumber tenaga listrik dan benda kerja melalui proses busur listrik. Elektroda ini diklasifikasikan tidak terumpan. Penggunaan elektroda untuk pengelasan TIG/GTAW berbeda dengan pengelasan SMAW maupun MIG. Pengelasan ini mampu membangkitkan temperatur tinggi (30000°F atau 16648,9°C) Pemilihan elektroda tungsten untuk pengelasan TIG/GTAW didasarkan karakteristiknya, titik cair tungsten adalah 6000°F atau 3370°C dan titik leburnya 11000°F atau 6135°C.
Tabel 4.1 | Bahan elektroda berdasarkan DIN 32528

<table>
<thead>
<tr>
<th>General use</th>
<th>Composition %</th>
<th>DIN</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Tungsten, pure</td>
<td>W</td>
<td>Green</td>
</tr>
<tr>
<td>AC &amp; DC</td>
<td>Tungsten + 1 thorium</td>
<td>WT 10</td>
<td>Yellow</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 2 thorium</td>
<td>WT 20</td>
<td>Red</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 3 thorium</td>
<td>WT 30</td>
<td>Lilac</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 4 thorium</td>
<td>WT 40</td>
<td>Orange</td>
</tr>
<tr>
<td>AC</td>
<td>Tungsten + 0.8 zirconium</td>
<td>W 28</td>
<td>White</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 1.0 lanthanum</td>
<td>WL 10</td>
<td>Black</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 1.0 cerium</td>
<td>WC 10</td>
<td>Pink</td>
</tr>
<tr>
<td>DC</td>
<td>Tungsten + 2.0 cerium</td>
<td>WC 20</td>
<td>Grey</td>
</tr>
</tbody>
</table>

( Munchaster, 1991:23)

Penggunaan pengelasan TIG/GTAW dengan tungsten murni harganya murah dan memberikan busur yang stabil dengan gas pelindung argon maupun helium. Begitu pun pada arus bolak-balik efek rectifier tidak ada. Tungsten murni dapat digunakan pengelasan pada DCRP. Akan tetapi tungsten murni juga mempunyai kelemahan berupa daya nyala rendah, kurang awet dan muatan arus rendah. Tungsten paduan memiliki keuntungan lebih awet, muatan arus tinggi dan daya nyala lebih baik, sementara kelemahannya adalah lebih mahal, dengan arus bolak-balik ada rectifier dan stabilitas busur rendah. Gambar 4.1 menunjukan kode warna tungsten murni dan paduan
Thoriated tungsten (gambar 4.2) merupakan elektroda yang sangat umum digunakan di amerika dan negara lainnya. Untuk paduan thorium 2% diberi kode warna merah. Kelebihannya adalah memberi keuntungan pada saat mulainya penyalaan busur dan menghasilkan kapasitas arus listrik yang kuat, bila dibandingkan dengan tungsten murni. Thorium akan menambah emisi electron pada electroda, dapat digunakan pada ukuran diameter elektroda yang kecil. Dapat digunakan untuk pengelasan arus DC pada material baja karbon, Stainless Steels, paduan nikel dan titanium.
Paduan zirconium dengan tungsten (gambar 4.3), biasanya digunakan pada pengelasan AC. Memiliki busur yang lebih stabil dibandingkan tungsten murni dan memberikan tahanan yang tinggi bila terjadi kontaminasi dalam pengelasan dengan menggunakan AC, paduan ini juga memberikan awal penyalaan busur yang baik. Digunakan untuk pengelasan alumunium dan paduan magnesium
Lanthanated tungsten bersifat non-radioactive, mempunyai konduktivitas yang sama dengan 2% thoriated tungsten, sehingga weder dapat mengganti 2% thoriated tungsten dengan lanthanated tungsten tanpa mengubah parameter lasnya. Sehingga di Eropa dan Jepang elektroda ini sangat popular sebagai pengganti 2% thoriated tungsten. Lanthanated tungsten baik untuk pengelasan DC tetapi dapat juga digunakan untuk pengelasan AC.

| Gambar 4.4 | Tungsten 1% dan 1,5% Lanthanated (www.chinatungsten.com) |

Ceriated tungsten (gambar 4.5) mempunyai karakteristik bahan non-radioaktif. Digunakan untuk pengelasan DC dengan arus rendah, sangat mudah dinyalakan. Biasanya membutuhkan arus 10% dari arus yang biasa digunakan untuk thoriated.
tungsten. Biasa digunakan untuk pengelasan pipa, komponen yang kecil dan siklus pengelasan yang pendek.

Gambar 4.5 | Tungsten 2% Ceriated (www.chinatungsten.com)

![Tungsten 2% Ceriated](www.chinatungsten.com)

<table>
<thead>
<tr>
<th>Elektroda</th>
<th>Tebal pelat (mm)</th>
<th>DCS (P)</th>
<th>Dia file (mm)</th>
<th>Kecepatan pengelasan (iPm)</th>
<th>Aliran gas argon (Cfh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>0,25 -</td>
<td>15</td>
<td>0,5</td>
<td>12 - 18</td>
<td>8 - 10</td>
</tr>
<tr>
<td>0,5</td>
<td>0,31 -</td>
<td>5 -</td>
<td>0,5</td>
<td>12 - 18</td>
<td>8 - 10</td>
</tr>
<tr>
<td>1</td>
<td>0,50 -</td>
<td>15 -</td>
<td>1</td>
<td>12 - 18</td>
<td>8 - 10</td>
</tr>
<tr>
<td>1,6</td>
<td>0,90 -</td>
<td>100</td>
<td>1,6</td>
<td>12 - 18</td>
<td>8 - 10</td>
</tr>
<tr>
<td>2,4</td>
<td>1,6 -</td>
<td>140</td>
<td>2,4</td>
<td>12 - 18</td>
<td>8 - 10</td>
</tr>
<tr>
<td>3,2</td>
<td>3,2</td>
<td>150</td>
<td>3,2</td>
<td>10 - 12</td>
<td>8 - 10</td>
</tr>
</tbody>
</table>

(Sunaryo, 2009)

Prosedur penggunaan elektroda

1. Untuk pengelasan dengan menggunakan arus DCEN, maka kabel yang dihubungkan dengan mulut pembakar (torch) merupakan kabel negatif (-) sedangkan untuk benda kerja pada posisi positif (+). Untuk menajamkan ujung elektroda dengan menggunakan mesin gerinda dan pada saat menggerinda tidak boleh langsung dengan mulut pembakar akan tetapi harus dibuka dahulu batang elektroda tersebut baru diruncingkan. Meruncingkan elektroda memerlukan...
cara khusus yaitu secara vertikal terhadap roda gerinda.(gambar 4.5) selain secara manual terdapat alat gerinda khusus yang memudahkan welder helper mengasah elektroda tungsten. (gambar 4.6)

<table>
<thead>
<tr>
<th>Gambar 4.6</th>
<th>Penggerindaan elektroda (Sumber: Munchaster, 1991:26)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Gerinda Elektroda" /></td>
<td>Betul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gambar 4.7</th>
<th>Tungsten grinder (Sumber: <a href="http://www.arc-zone.com">www.arc-zone.com</a>)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image2.png" alt="Grinder Tungsten" /></td>
<td></td>
</tr>
</tbody>
</table>

2. Pengelasan dengan menggunakan DC, ketajaman ujung elektroda yang dikehendaki diruncingkan kurang lebih 2 atau 2,5 kali dari diameter elektroda (gambar 4.7)

<table>
<thead>
<tr>
<th>Gambar 4.8</th>
<th>Sudut ujung elektroda (Sumber: Weman, 2003:33)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Sudut Elektroda" /></td>
<td></td>
</tr>
</tbody>
</table>

3. Pengelasan dengan menggunakan AC (gambar 4.8), ujung elektroda harus berbentuk bola dengan ukuran 1,5 lebih besar dari diameter elektroda, untuk membentuk ujung elektroda menjadi bentuk bola terlebih dahulu.
mesin las dihubungkan atau disetel ke DCRP dan busur digoreskan sampai mencair dan akan membentuk bola ujung elektroda tersebut.

Gambar 4.9 | Ujung Elektroda berdasarkan Polaritas (Sumber: free-ed.net)

<table>
<thead>
<tr>
<th>Tebal pelat (mm)</th>
<th>Joint Type</th>
<th>Current, DCSP (amp)</th>
<th>Diameter elektroda (mm)</th>
<th>Aliran Argon (cfh)</th>
<th>Diameter bahan tambah (mm)</th>
<th>Arc Speed (ipm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>I</td>
<td>80 – 100</td>
<td>1,6</td>
<td>10</td>
<td>1,6</td>
<td>12</td>
</tr>
<tr>
<td>2,38</td>
<td>I</td>
<td>100 – 120</td>
<td>1,6</td>
<td>10</td>
<td>1,6</td>
<td>10</td>
</tr>
<tr>
<td>2,38</td>
<td>T</td>
<td>110 – 130</td>
<td>1,6</td>
<td>10</td>
<td>1,6</td>
<td>10</td>
</tr>
<tr>
<td>3,18</td>
<td>sudut</td>
<td>120 – 140</td>
<td>1,6</td>
<td>10</td>
<td>2,38</td>
<td>12</td>
</tr>
<tr>
<td>3,18</td>
<td>tumpang</td>
<td>130 – 150</td>
<td>1,6</td>
<td>10</td>
<td>3,18</td>
<td>10</td>
</tr>
<tr>
<td>4,76</td>
<td>sudut</td>
<td>200 – 250</td>
<td>2,38</td>
<td>15</td>
<td>3,18</td>
<td>8</td>
</tr>
<tr>
<td>4,76</td>
<td>tumpang</td>
<td>225 – 275</td>
<td>2,38</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4.3 berikut menunjukan penggunaan elektroda pada pengelasan DC, digunakan untuk baja lunak dan stainless steel.

Tabel 4.3 | Penggunaan Elektroda pada Pengelasan DC

(Sunaryo, 2009)
Tabel 4.4 menunjukkan penggunaan elektroda tungsten untuk pengelasan AC, digunakan untuk pengelasan Alumunium.

### Tabel 4.4 Penggunaan Elektroda Tungsten untuk Pengelasan AC

<table>
<thead>
<tr>
<th>Tebal pelat (mm)</th>
<th>Joint Type</th>
<th>Alternating Current (amp)</th>
<th>Diameter elektroda (mm)</th>
<th>Aliran gas Argon (cfh)</th>
<th>Diameter bahan tambah (mm)</th>
<th>Jumlah jalur las</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>I</td>
<td>70 - 100</td>
<td>1,6</td>
<td>20</td>
<td>2,4</td>
<td>1</td>
</tr>
<tr>
<td>3,2</td>
<td>I</td>
<td>125 - 160</td>
<td>2,4</td>
<td>20</td>
<td>3,2</td>
<td>1</td>
</tr>
<tr>
<td>6,35</td>
<td>V</td>
<td>225 - 275</td>
<td>4</td>
<td>30</td>
<td>4,75</td>
<td>1</td>
</tr>
<tr>
<td>9,53</td>
<td>V</td>
<td>325 - 400</td>
<td>6,35</td>
<td>35</td>
<td>6,35</td>
<td>2</td>
</tr>
<tr>
<td>12,52</td>
<td>V</td>
<td>375 - 450</td>
<td>6,35</td>
<td>35</td>
<td>6,35</td>
<td>2</td>
</tr>
<tr>
<td>25,4</td>
<td>V</td>
<td>500 - 600</td>
<td>8 - 9,5</td>
<td>35 - 45</td>
<td>6,35 - 9,53</td>
<td>3</td>
</tr>
</tbody>
</table>

(Bunrayo, 2009)

### Bahan Bacaan 2 : Bahan Pengisi (Filler Rod)

Bahan pengisi atau filler rod merupakan logam pengisi kampuh las pada poses las TIG/GTAW. Logam pengisi mempunyai panjang 1 meter, merupakan kawat lurus tidak berselaput, dilapisi dengan lapisan tipis tembaga untuk melindungi dari karat. Kawat logam pengisi yang berkarat atau berminyak menyebabkan cacat las. Sehingga kawat logam pengisi tidak boleh tersentuh oleh tangan telanjang atau oleh sarung tangan kotor. Yakinkan untuk menggunakan sarung tangan yang bersih bila membawa kawat logam pengisi.

Bahan pengisi mempunyai banyak jenisnya tergantung dari logam induk yang akan dilas. Terdapat banyak kodeifikasi bahan pengisi, tergantung dari standar yang membuatnya. Misalnya: Amerika berstandar AWS (American Welding Society), Jerman berstandar DIN (Deutsche Industri Norm), Jepang berstandar JIS (Japan Industrie Standard) Diameter bahan pengisi tersedia dalam ukuran Ø 1.0; Ø 1,2; Ø 1,6; Ø 2,0; Ø 2,4; Ø 3,2; Ø 4,0; Ø 5,0 mm. Bahan pengisi dikemas dalam kemasan 5 dan 10 Kg. dengan panjang satu meter. (gambar 4.9). Pada penggunaannya bahan pengisi diumpakan ke cairan las layaknya
proses las OAW, yaitu *torch* oleh tangan kanan sementara bahan pengisi oleh tangan kiri.

Gambar 4.10  
Kemasan bahan pengisi (Sumber: www.weldequip.com)

Gambar 4.10

AWS mengeluarkan beberapa standar bahan pengisi berdasarkan logam induk yang akan dilas, diantaranya:
a. **Untuk mengelas baja karbon (gambar 4.10)**

Bahan pengisi yang digunakan untuk mengelas baja karbon mempunyai kode ER70S-2, ER70S-6, dan seri ER70S-seri lainnya yang mempunyai angka berbeda. Angka tersebut menunjukan macam tambahan bahan kimia dalam bahan pengisi. *Filler rods* ini digunakan untuk mengelas pelat baja, pipa berdiameter kecil dan *root pass*.

b. **Untuk mengelas logam stainless steel (gambar 4.11)**

c. Untuk mengelas logam alumunium (gambar 4.12)
Bahan pengisi dengan kode ER4043 digunakan untuk mengelas paduan alumunium seri 6000, bersama dengan sebagian besar paduan cor lainnya. Bisa digunakan untuk mengelas komponen otomotif seperti rangka, poros penggerak, rangka sepeda.
Bahan pengisi dengan ER5356 merupakan paduan alumunium dengan magnesium. Digunakan untuk mengelas paduan alumunium cor dan tempa. Umumnya digunakan untuk pengelasan paduan alumunium seri 5000 atau 6000.

<table>
<thead>
<tr>
<th>Gambar 4.13</th>
<th>Bahan pengisi untuk logam alumunium (Sumber: <a href="http://www.atikerkaynak.com.tr">www.atikerkaynak.com.tr</a>)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Bahan pengisi aluminium" /></td>
<td>Aluminium Filler Wire ER4043 2.4mm</td>
</tr>
</tbody>
</table>

Bahan Bacaan 3 : Gas Pelindung
Gas pelindung berfungsi untuk melindungi cairan las terhadap oksidasi udara luar. Apabila cairan las teroksidis maka akan mengakibatkan bahan pengisi dengan bahan las tidak fusi dengan sempurna. Jenis gas pelindung terdiri dari: gas argon (Ar), gas helium (He), gas campuran helium dengan argon (75% He, 25% Ar) dan gas campuran argon/helium dan hydrogen yang biasa disebut argon shield. Gas argon dan helium ini bersifat “inert” atau tidak menimbulkan reaksi kimia terhadap logam.

a. Gas argon
Las TIG/GTAW selalu menggunakan gas argon. Gas ini adalah hasil destilasi dari udara, destilasi menghasilkan 78% Nitrogen, 21% Oksigen dan 1% gas lainnya termasuk argon. Gas argon mempunyai kelebihan dibanding gas pelindung lainnya diantaranya bisa digunakan untuk pengelasan semua logam dan harga dipasaran

Ionisasi potensial argon sekitar 15,5 elektron volts, voltagse yang dibutuhkan untuk merubah elektron dari bentuk asalnya menjadi ion positif. Membuat gas yang berada di arela las menjadi plasma. Sisa gas pelindung mengelilingi busur mengeluarkan komponen aktif untuk mencegah udara masuk, paling tidak meminimalkan oksidasi logam.

Argon mempunyai spesifikasi (Dadang, 2013:59) sebagai berikut:

a. Simbol kimia : Ar
b. Titik didih : -185,9°C
c. Berat jenis relative (udara=1) : 1,4
d. Berat molekul : 40
e. Suhu kritis : -122,4°C
f. Berat jenis gas (@101,3kPa; 15°C) : 1,78kg/m³
g. Berat jenis cairan (B.Pt) : 1393kg/m³
h. Isi spesifik (@101,3kPa; 15°C) : 0,591m³/kg
i. Titik api : tidak terbakar

Argon memberikan busur energi yang padat, energi yang terkonsentrasi di dalam area busur (gambar 4.13). Hal ini menghasilkan lapisan las yang sempit, dan mencapai kemurnian busur 99,9%. Las menggunakan gas pelindung ini dapat digunakan untuk berbagai macam logam: mild steels, stainless steels, alumnium dan paduan magnesium.

Argon diijinkan untuk dicampurkan dengan gas lain selama dalam batas 1-5%. Gas campuran mengkonsentrasikan busur dan meningkatkan kecepatan pengelasan, tetapi biasanya digunakan untuk las finishing. Hidrogen diklasifikasikan sebagai gas pengurang. Pencampuran hidrogen dapat mengakibatkan porosity pada lasan. Jadi
harus digunakan rasio perbandingan yang lebih rendah untuk mendapatkan kekuatan dan permukaan lasan yang baik. Tabel 4.5 menunjukan penggunaan gas pelindung untuk berbagai macam logam las.
Tabel 4.5 | Gas pelindung untuk berbagai logam las

<table>
<thead>
<tr>
<th>No</th>
<th>Gas mix</th>
<th>Mild steels</th>
<th>Low alloy steels</th>
<th>Stainless steels</th>
<th>Nickel alloy</th>
<th>Al &amp; alloy</th>
<th>Copper &amp; alloy</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Commercial argon 99,995</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General use</td>
</tr>
<tr>
<td>2.</td>
<td>High purity argon 99,998</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td>Fine precision welding</td>
</tr>
<tr>
<td>3.</td>
<td>Ar75/He25</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td>Very suitable for Al</td>
</tr>
<tr>
<td>4.</td>
<td>Ar70/He30</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Ar50/He50</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Ar99/H₂1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not for use with martensitic s/steel</td>
</tr>
<tr>
<td>7.</td>
<td>Ar98.5/H₂1.5</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Ar98/H₂2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Ar97/H₂3</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Ar95/H₂5</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Special Ar/H₂</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. Gas helium

Gas helium merupakan gas pelindung yang ideal, hanya saja relatif mahal karena sangat sulit ditemukan di pasaran. Nilai potensial ionisasinya mencapai 24,5 electron volts, sebagai penghantar panas yang baik serta menjadikan penetrasi lebih dalam dibandingkan memakai gas pelindung argon.

Dengan panjang busur yang sama, helium memiliki voltase busur yang lebih tinggi dibandingkan argon. Rumus \( \text{Amp} \times \text{Volt} \times \text{Time} = \text{Joule} \) menunjukan semakin tinggi voltase maka semakin tinggi input panas untuk lasan. Jadi helium dan/ campuran helium-argon digunakan untuk logam tebal atau laju las yang tinggi dan meminimalisasi porosity.

Panjang busur harus selalu dijaga konstan, sehingga lebih memungkinkan menggunakan mesin atau welder yang mempunyai skill yang tinggi. Kelemahan helium lainnya adalah memerlukan aliran gas yang tinggi sehingga boros dalam pemakaian. Penggunaan arus yang rendah juga dihindari, amper sekitar di atas 150A dibutuhkan untuk logam yang tebal.

c. Gas campuran argon dan helium

Gas campuran 75% He dan 25% Ar, digunakan untuk pengelasan bahan las yang berbeda jenis. Komposisi helium yang besar digunakan untuk meningkatkan suhu pemanasan gas sehingga digunakan untuk bahan las alumunium dan tembaga. Rambatan panas yang dihasilkan terlalu cepat sehingga bahan lebih cepat mencair. Hasil penetrasi menjadi lebar dan dalam.

d. Gas campuran argon/helium/hydrogen

Gas campuran ini sangat baik untuk pengelasan baja (baja karbon rendah dan baja paduan), stainless steel, tembaga paduan nikel. Gas ini akan menghasilkan busur panas dan rambatan panas yang baik.
e. **Tanda warna tabung**

Tanda warna pada tabung diterapkan untuk memudahkan membedakan jenis gas yang digunakan. Gas pelindung untuk TIG/GTAW diantaranya:

1) Silinder gas Argon berwarna biru tua (*peacock blue*)
2) Silinder gas helium berwarna coklat muda (*middle brown*)
3) Silinder gas argon/helium berwarna bagian badan biru tua dan bagian punggung coklat muda
4) Silinder gas argon/helium/hydrogen berwarna bagian badan biru tua, bagian punggung coklat muda, dan bagian atas/penutup berwarna merah tua.

Besarnya aliran gas pelindung ditentukan oleh ukuran dan bahan logam induk, serta ukuran nosel. Gambar 4.15 menunjukkan grafik hubungan aliran gas terhadap tebal logam dan ukuran nosel.

<table>
<thead>
<tr>
<th>Gambar 4.15</th>
<th>Grafik hubungan aliran gas dengan tebal logam induk dan ukuran nosel (Sumber: Dadang, 2013:60)</th>
</tr>
</thead>
</table>

![Gambar 4.15 Grafik hubungan aliran gas dengan tebal logam induk dan ukuran nosel](image.png)
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Elektroda Tungsten, BahanTambah (Filler Rod) dan Gas Pelindung pada Proses Las TIG/GTAW ini? Sebutkan!
2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!
3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!


Aktivitas Pembelajaran 1 ; Elektroda Tungsten (2 JP)

Saudara diminta untuk melakukan pengamatan di bengkel las mengenai macam-macam elektroda tungsten yang digunakan untuk pengelasan TIG/GTAW. Hasil pengamatan dituangkan dalam laporan tertulis (LK-01) berupa jenis-jenis elektroda, kode warnanya serta penggunaannya. Untuk membantu saudara mengisi LK-01, dapat dipandu oleh pertanyaan berikut ini:

1. Jelaskan macam-macam jenis elektroda tungsten yang biasa digunakan pada proses las TIG/GTAW yang ada di bengkel las! Sebutkan pula kode warnanya!
2. Jelaskan penggunaan yang tepat dari masing-masing jenis elektroda tersebut!


Aktivitas Pembelajaran 2: Bahan Pengisi (Filler rod) (1 JP)

Saudara diminta untuk melakukan pengamatan di bengkel las mengenai macam-macam bahan pengisi (filler rod) yang digunakan untuk pengelasan TIG/GTAW. Hasil pengamatan dituangkan dalam laporan tertulis (LK-02) berupa jenis bahan pengisi, kodenya serta penggunaan yang sesuai. Untuk membantu saudara mengisi LK-02, dapat dipandu oleh pertanyaan berikut ini:

1. Jelaskan macam-macam jenis bahan pengisi (filler rod) yang biasa digunakan pada proses las TIG/GTAW yang ada di bengkel las! Sebutkan pula kodenya!

2. Jelaskan penggunaan yang tepat dari masing-masing jenis bahan pengisi (filler rod) tersebut!

**Aktivitas Pembelajaran 3 ; Gas pelindung (2 JP)**

Saudara diminta untuk melakukan pengamatan di bengkel las mengenai macam-macam gas pelindung yang digunakan untuk pengelasan TIG/GTAW. Hasil pengamatan dituangkan dalam laporan tertulis (LK-03) berupa jenis-jenis gas pelindung, warna tabung serta penggunaannya. Untuk membantu saudara mengisi LK-03, dapat dipandu oleh pertanyaan berikut ini:

1. Jelaskan macam-macam jenis gas pelindung yang biasa digunakan pada proses las TIG/GTAW yang ada di bengkel las! Sebutkan pula warna tabungnya!
2. Jelaskan penggunaan yang tepat dari masing-masing jenis gas pelindung tersebut!

Setelah LK-03 terisi, diskusikan dengan rekan satu kelompok. Hasil diskusi dapat Saudara tuliskan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan.


**E. Rangkuman**

Elektroda tungsten TIG/GTAW merupakan penghubung terakhir antara sumber tenaga listrik dan benda kerja melalui proses busur listrik. Penggunaan elektroda untuk pengelasan TIG/GTAW berbeda dengan pengelasan SMAW maupun MIG. Elektroda ini diklasifikasikan tidak terumpan. Terdapat beberapa jenis elektroda yang biasa digunakan yaitu tungsten murni, dan tungsten paduan dengan: thorium, zirconium, cerium, dan lanthanium. Tungsten paduan dibedakan secara fisik dengan kode warna di salah satu ujungnya. Tungsten yang biasa digunakan di lapangan ialah tungsten murni dengan kode...
warna hijau untuk pengelasan arus AC dan tungsten paduan thorium dengan kode warna hijau untuk pengelasan arus DC.

Bahan pengisi atau *filler rod* merupakan logam pengisi kampuh las pada poses las *TIG/GTAW*. Logam pengisi mempunyai panjang 1 meter, merupakan kawat lurus tidak berselaput, dilapisi dengan lapisan tipis tembaga untuk melindungi dari karat. Terdapat beberapa jenis bahan pengisi berdasarkan AWS diantaranya: ER70S-2, ER70S-6, dan seri ER70S untuk pengelasan baja karbon; ER308 dan ER308L untuk pengelasan stainless steel; dan ER4043 untuk pengelasan alumunium

Gas pelindung berfungsi untuk melindungi cairan las terhadap oksidasi udara luar. Apabila cairan las teroksidasi maka akan mengakibatkan bahan pengisi dengan bahan las tidak fusi dengan sempurna. Jenis gas pelindung terdiri dari: gas argon (*Ar*), gas helium (*He*), gas campuran helium dengan argon (75% He, 25% Ar) dan gas campuran argon/helium dan hydrogen yang biasa disebut *argon shield*. Gas argon dan helium ini bersifat “inert” atau tidak menimbulkan reaksi kimia terhadap logam.
F. Tes Formatif

1. Jelaskan perbedaan fungsi elektroda pada pengelasan \textit{TIG/GTAW} dan fungsi elektroda dari pengelasan \textit{SMAW} dan \textit{GMAW}

   \textbf{Jawaban}
   
   
   
   

2. Jelaskan perbedaan penggunaan elektroda tungsten murni dan elektroda tungsten paduan thorium!

   \textbf{Jawaban}
   
   
   
   

3. Jelaskan bagaimana cara mengasah elektroda tungsten untuk arus DC dan pembentukan ujung elektroda untuk arus AC!

   \textbf{Jawaban}
   
   
   
   

4. Jelaskan penggunaan bahan pengisi dengan kode AWS berikut ER70S-2; ER308; dan ER4043.

   \textbf{Jawaban}
   
   
   
   

---

**PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG**

\textit{(TUNGSTEN INERT GAS)}

TEKNIK MESIN – FABRIKASI LOGAM
5. Jelaskan perbedaan karakteristik gas pelindung argon murni dan argon 75% - Helium 25%.

Jawaban

6. Jelaskan hubungan antara tebal logam yang akan dilas dengan besarnya aliran gas, serta hubungan diameter nosel dengan besarnya aliran gas!

Jawaban
**G. Kunci Jawaban**

1. Jelaskan perbedaan fungsi elektroda pada pengelasan GTAW dan fungsi elektroda dari pengelasan SMAW dan GMAW

**Jawaban**

Elektroda pada pengelasan GTAW berfungsi sebagai penghasil dan pengarah busur listrik, tetapi tidak berfungsi sebagai bahan tambah. Berbeda dengan elektroda pada pengelasan SMAW dan GMAW yang berfungsi selain penghasil dan pengarah busur listrik juga sebagai bahan pengisi. Oleh karena itu elektroda pada SMAW dan GMAW dinamakan consumable electrode sedangkan elektroda GTAW dinamakan non consumable electrode.

2. Jelaskan perbedaan penggunaan elektroda tungsten murni dan elektroda tungsten paduan thorium!

**Jawaban**

Penggunaan pengelasan GTAW dengan tungsten murni harganya murah dan memberikan busur yang stabil dengan gas pelindung argon maupun helium. Begitu pun pada arus bolak-balik efek rectifier tidak ada. Tungsten murni dapat digunakan pengelasan pada DCRP. Akan tetapi tungsten murni juga mempunyai kelemahan berupa daya nyala rendah, kurang awet dan muatan arus rendah. Tungsten paduan memiliki keuntungan lebih awet, muatan arus tinggi dan daya nyala lebih baik, sementara kelemahannya adalah lebih mahal, dengan arus bolak-balik ada rectifier dan stabilitas busur rendah.

Sedangkan Thoriated tungsten merupakan elektroda yang sangat umum digunakan di amerika dan negara lainnya. Untuk paduan thorium 2% diberi kode warna merah. Kelebihannya adalah memberi keuntungan pada saat mulainya penyalaan busur dan menghasilkan kapasitas arus listrik yang kuat, bila dibandingkan dengan tungsten murni. Thorium akan menambah emisi electron pada electroda, dapat digunakan pada ukuran diameter elektroda yang kecil. Dapat digunakan untuk pengelasan arus DC pada material baja karbon, Stainless Steels, paduan nikel dan titanium.
3. Jelaskan bagaimana cara mengasah elektroda tungsten untuk arus DC dan pembentukan ujung elektroda untuk arus AC!

**Jawaban**

Untuk menajamkan ujung elektroda dengan menggunakan mesin gerinda dan pada saat menggerinda tidak boleh langsung dengan mulut pembakar akan tetapi harus dibuka dahulu batang elektroda tersebut baru diruncingkan. Meruncingkan elektroda memerlukan cara khusus yaitu secara vertikal terhadap roda gerinda selain secara manual terdapat alat gerinda khusus yang memudahkan *welder helper* mengasah elektroda tungsten.

4. Jelaskan penggunaan bahan pengisi dengan kode AWS berikut ER70S-2; ER308; dan ER4043.

**Jawaban**

ER70S-2 digunakan sebagai bahan tambah pada pengelasan baja karbon; ER308 digunakan sebagai bahan tambah pada pengelasan logam stainless steel; dan ER4043 digunakan sebagai bahan tambah pada pengelasan.

5. Jelaskan perbedaan karakteristik gas pelindung argon murni dan argon 75% - Helium 25%.

**Jawaban**

Argon memberikan busur energi yang padat, energi yang terkonsentrasi di dalam area busur. Hal ini menghasilkan lapisan las yang sempit, dan mencapai kemurnian busur 99,9%. Las menggunakan gas pelindung ini dapat digunakan untuk berbagai macam logam: *mild steels, stainless steels*, alumunium dan paduan magnesium.

Gas campuran 75% He dan 25% Ar, digunakan untuk pengelasan bahan las yang berbeda jenis. Komposisi helium yang besar digunakan untuk meningkatkan suhu pemanasan gas sehingga digunakan untuk bahan las alumunium dan tembaga. Rambatan panas yang dihasilkan terlalu cepat sehingga bahan lebih cepat mencair. Hasil penetrasi menjadi lebar dan dalam.
6. Jelaskan hubungan antara tebal logam yang akan dilas dengan besarnya aliran gas, serta hubungan diameter nosel dengan besarnya aliran gas!

**Jawaban**

Hubungannya semakin tebal logam maka semakin besar aliran gas, begitu juga dengan diameter nosel yang semakin besar maka semakin besar pula aliran gas.
Lembar Kerja KP-04

LK - 00

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Elektroda tungsten, bahan pengisi dan gas pelindung pada proses las TIG/GTAW? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditemukannya? Jelaskan!
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>No</th>
<th>Tungsten</th>
<th>Penggunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jenis</td>
<td>Warna</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lembar Kerja LK-01.P Praktik Pengasahan Elektroda Tungsten

A. Persiapan Alat dan Bahan
1. Elektroda tungsten 2% thorium dengan kode warna merah diisapkan
2. Mesin gerinda meja diisapkan
3. Kacamata pengaman disiapkan
4. Bevel protractor disiapkan
5. Gambar kerja disiapkan

B. Sikap dan Keselamatan Kerja
1. SOP menggunakan gerinda meja ditaati
2. Alat pelindung diri dipakai
3. Bekerja dengan bersih dan rapi
4. Alat dan tempat kerja dibersihkan setelah selesai praktik

C. Proses Kerja
1. Perhatikan gambar kerja, amati bentuk ujung elektroda untuk pengelasan arus DC.
2. Elektroda tungsten dipegang menggunakan kedua tangan dengan posisi vertikal menghadap batu gerinda jangan horizontal terhadap batu gerinda.
   ![Benar dan Salah](image)
D. Hasil Kerja

Hasil kerja sesuai dengan gambar kerja

E. Gambar Kerja

Pilihlah bentuk elektroda untuk arus **DC**

Besarnya \( L = 2D \) s/d \( L = 2,5D \)
F. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta</td>
<td>:</td>
</tr>
<tr>
<td>Kelas</td>
<td>:</td>
</tr>
<tr>
<td>Waktu Praktikum</td>
<td>:</td>
</tr>
</tbody>
</table>

**I Bahan**

1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)
2. ...............................................................
3. Dst.

**II Peralatan**

1. (Sebutkan peralatan kerja yang digunakan)
2. ...............................................................
3. Dst.

**III Keselamatan Kerja**

1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. ...............................................................
3. Dst.

**IV Proses Kerja**

1. (Uraikan tahapan kerja yang digunakan)
2. ...............................................................
3. Dst.

**V Hasil Kerja**

1. (Uraikan hasil kerja yang diinginkan)
2. ...............................................................
3. Dst.

**VI Gambar Kerja**
<table>
<thead>
<tr>
<th>No</th>
<th>Bahan Pengisi</th>
<th>Kode</th>
<th>Penggunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Tabung Gas Pelindung</td>
<td>Penggunaan</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warna</td>
<td>Jenis Gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form LK-03.P Praktik Pengaturan Aliran Gas Pelindung

A. Persiapan Alat dan Bahan
1. Mesin las TIG/GTAW disiapkan
2. Tabung Gas Pelindung Argon disiapkan
3. Kacamata pengaman disiapkan
4. Lembar kerja disiapkan

B. Sikap dan Keselamatan Kerja
1. SOP menggunakan mesin las TIG/GTAW ditaati
2. Alat pelindung diri dipakai
3. Bekerja dengan bersih dan rapi
4. Alat dan tempat kerja dibersihkan setelah selesai praktik

C. Proses Kerja
1. Perhatikan gambar regulator las

Keterangan gambar.

- a. Manometer tekanan isi tabung.
- b. Gelas ukur tekanan isi
- c. Pengatur tekanan kerja
d. Keterangan gas
e. Tanda warna gas

2. Lakukan pengaturan aliran gas pelindung berdasarkan tebal bahan dan diameter nosel.

<table>
<thead>
<tr>
<th>No</th>
<th>Tebal bahan (mm)</th>
<th>Diameter Nosel (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baja lunak</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>1.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


D. Hasil Kerja

Hasil kerja sesuai dengan tabel di bawah ini

<table>
<thead>
<tr>
<th>Aliran Gas (l/min) berdasarkan</th>
<th>Baja lunak</th>
<th>Stainless Steel</th>
<th>Alumunium</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>(mm)</td>
<td>(l/min)</td>
<td>(mm)</td>
</tr>
<tr>
<td>1.</td>
<td>4</td>
<td>6 - 7</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>5 - 6</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>2</td>
<td>6 - 7</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>6 - 7</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>7 - 8</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)
E. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta</td>
<td>:</td>
</tr>
<tr>
<td>Kelas</td>
<td>:</td>
</tr>
<tr>
<td>Waktu Praktikum</td>
<td>:</td>
</tr>
</tbody>
</table>

I. Bahan

1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)
2. …………………………………………………………………………………………………
3. Dst.

II. Peralatan

1. (Sebutkan peralatan kerja yang digunakan)
2. …………………………………………………………………………………………………
3. Dst.

III. Keselamatan Kerja

1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. …………………………………………………………………………………………………
3. Dst.

IV. Proses Kerja

1. (Uraikan tahapan kerja yang digunakan)
2. …………………………………………………………………………………………………
3. Dst.

V. Hasil Kerja

1. (Uraikan hasil kerja yang diinginkan)
2. …………………………………………………………………………………………………
3. Dst.
VI  Gambar Kerja

KEGIATAN PEMBELAJARAN 5 : PERSIAPAN PENGELASAN

A. Tujuan

Setelah proses diklat, dengan melihat WPS peserta diklat dapat menentukan posisi dan sambungan las, memahami simbol las, memahami tindakan pencegahan dan perbaikan distorsi.

B. Indikator Pencapaian Kompetensi

Menganalisis metode pencegahan dan tindakan yang dilakukan untuk mengurangi dan memperbaiki distorsi.
1. Posisi pengelasan dapat ditentukan dengan benar
2. Macam Sambungan las dapat ditentukan dengan benar
3. Simbol las dapat dipahami dengan benar
4. Persiapan las untuk mengurangi distorsi dipahami dengan benar
5. Tindakan perbaikan distorsi dipahami dengan benar

C. Uraian Materi

Bahan Bacaan 1 : Posisi Pengelasan

Pada prinsipnya posisi pengelasan terbagi atas empat posisi, yaitu di bawah tangan (flat), di depan dada mendatar (horizontal-vertical), di depan dada vertikal (vertical downwards – vertical upwards) dan di atas kepala (overhead). Gambar 1.9 memperlihatkan posisi pengelasan tersebut untuk las tumpul (butt welding) kode yang di dalam tanda () merupakan koding dari AWS sedangkan yang di luar () merupakan koding dari EN 287-1. Sedangkan pada gambar 1.10 menunjukan macam-macam posisi pengelasan untuk las sudut (fillet joint welds).
Bahan Bacaan 2: Macam-macam Sambungan Las

Proses pengelasan, posisi pengelasan dan ketebalan logam induk harus diperhitungkan ketika kita memutuskan tipe sambungan yang akan kita buat. Sebuah sambungan memiliki parameter sudut ($\alpha$), sudut ($\beta$), root face (C), root gap (D), joint surface (E), radius (R) hanya untuk sambungan U dan plate thickness (t). (gambar 5.3)
**Gambar 5.3** Parameter sambungan (Sumber: Laren, 2004:83)

**Tabel 5.1** Macam-macam Sambungan Las

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sambungan I</td>
<td><img src="image1" alt="Gambar 1" /></td>
<td>TIG</td>
<td>t &lt; 2,5 mm</td>
</tr>
<tr>
<td></td>
<td>Tanpa root gap¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Sambungan I</td>
<td><img src="image2" alt="Gambar 2" /></td>
<td>SAW</td>
<td>t = 6 – 9 mm</td>
</tr>
<tr>
<td></td>
<td>Tanpa root gap²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Sambungan I</td>
<td><img src="image3" alt="Gambar 3" /></td>
<td>PAW</td>
<td>t = 1 – 8 mm</td>
</tr>
<tr>
<td></td>
<td>Satu sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Sambungan I</td>
<td><img src="image4" alt="Gambar 4" /></td>
<td>MMA,</td>
<td>t &lt; 4 mm</td>
</tr>
<tr>
<td></td>
<td>D = 2 – 2.5 mm</td>
<td></td>
<td>MIG, TIG, FCW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Sambungan I</td>
<td><img src="image5" alt="Gambar 5" /></td>
<td>MMA,</td>
<td>t &lt; 2,5 mm</td>
</tr>
<tr>
<td></td>
<td>D = 1 – 2 mm</td>
<td></td>
<td>MIG, TIG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Sambungan V</td>
<td><img src="image6" alt="Gambar 6" /></td>
<td>MMA,</td>
<td>t = 4 – 16 mm</td>
</tr>
<tr>
<td></td>
<td>α = 60°³</td>
<td></td>
<td>MIG</td>
<td></td>
</tr>
</tbody>
</table>

¹ Tanpa gap root
² Dua sisi
³ Bentuk V
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Sambungan V (\alpha = 60^\circ)</td>
<td><img src="image1" alt="Diagram 1" /></td>
<td>MMA, MIG, TIG, FCW</td>
<td>(t = 4 \rightarrow 16) mm</td>
</tr>
<tr>
<td></td>
<td>(C = 2,0 \rightarrow 2,5) mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(D = 2,5 \rightarrow 3,5) mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Sambungan V (\alpha = 60^\circ)</td>
<td><img src="image2" alt="Diagram 2" /></td>
<td>FCW</td>
<td>(t = 4 \rightarrow 20) mm</td>
</tr>
<tr>
<td></td>
<td>(C = 1,5 \rightarrow 2,5) mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(D = 4,0 \rightarrow 6,0) mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu sisi dengan backing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Sambungan V (\alpha = 80 - 90^\circ)</td>
<td><img src="image3" alt="Diagram 3" /></td>
<td>TIG+, SAW</td>
<td>(t = 3 \rightarrow 16) mm</td>
</tr>
<tr>
<td></td>
<td>(C = 1,5) mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanpa root gap(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Sambungan V (\alpha = 80 - 90^\circ)</td>
<td><img src="image4" alt="Diagram 4" /></td>
<td>SAW</td>
<td>(t = 8 \rightarrow 16) mm</td>
</tr>
<tr>
<td></td>
<td>(C = 3,0 \rightarrow 6,0) mm(^4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanpa root gap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG**
**(TUNGSTEN INERT GAS)**
TEKNIK MESIN – FABRIKASI LOGAM
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
</table>
| 11. | Sambungan V  
\( \alpha = 80 - 90^\circ \)  
C = 3,0 – 4,0 mm  
Tanpa root gap  
Dua sisi | | PAW+, SAW | t = 6 – 16 mm |
| 12. | Sambungan V  
\( \beta_1 = 45^\circ \)  
\( \beta_2 = 15^\circ \)  
C = 1,0 – 2,0 mm  
D = 2,0 – 3,0 mm  
Satu sisi | | MMA, FCW | t = 4 – 16 mm |
| 13. | Sambungan V  
\( \beta_1 = 45^\circ \)  
\( \beta_2 = 15^\circ \)  
C = 2,0 – 2,5 mm  
D = 2,0 – 2,5 mm  
Dua sisi | | MMA, FCW | t = 4 – 16 mm |
| 14. | Sambungan V  
\( \beta_1 = 45^\circ \)  
\( \beta_2 = 15^\circ \)  
C = 1,5 – 2,5 mm  
D = 4,0 – 6,0 mm  
Satu sisi dengan backing | | FCW | t = 4 – 20 mm |
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
</table>
| 15. | Sambungan X  
  \( \alpha = 60^\circ \)  
  C = 2,0 – 3,0 mm  
  D = 2,0 – 2,5 mm  
  Dua sisi | | MMA, MIG, TIG\(^6\), FCW | \( t = 14 – 30 \) mm\(^8\) |
| 16. | Sambungan X  
  \( \alpha = 80^\circ \)  
  C = 3,0 – 8,0 mm\(^4\)  
  Tanpa root gap  
  Dua sisi | | SAW | \( t = 14 – 30 \) mm |
| 17. | Sambungan X  
  \( \beta_1 = 45^\circ \)  
  \( \beta_2 = 15^\circ \)  
  C = 1,5 – 2,5 mm  
  D = 2,5 – 3,0 mm  
  Dua sisi | | MMA, MIG, TIG\(^6\), FCW | \( t = 14 – 30 \) mm\(^8\) |
| 18. | Sambungan X  
  \( \beta_1 = 45^\circ \)  
  \( \beta_2 = 15^\circ \)  
  C = 3,0 – 8,0 mm\(^4\)  
  Dua sisi | | SAW\(^9\) | \( t = 14 – 30 \) mm |
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>Sambungan U</td>
<td><img src="image" alt="Sambungan U" /></td>
<td>MMA, MIG, TIG&lt;sup&gt;6&lt;/sup&gt;, FCW, SAW&lt;sup&gt;10&lt;/sup&gt;</td>
<td>t &lt; 50 mm</td>
</tr>
<tr>
<td></td>
<td>β = 10°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = 8,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 2,0 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2,0 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Sambungan U Ganda</td>
<td><img src="image" alt="Sambungan U Ganda" /></td>
<td>SAW&lt;sup&gt;9&lt;/sup&gt;</td>
<td>t &gt; 20 mm</td>
</tr>
<tr>
<td></td>
<td>β = 15°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = 8,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 4,0 – 8,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Sambungan Fillet</td>
<td><img src="image" alt="Sambungan Fillet" /></td>
<td>MMA, MIG, TIG, FCW</td>
<td>t &gt; 2 mm</td>
</tr>
<tr>
<td></td>
<td>Tanpa root gap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A = 0,7 x t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu atau dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Sambungan setengah V</td>
<td><img src="image" alt="Sambungan setengah V" /></td>
<td>MMA, MIG, TIG&lt;sup&gt;6&lt;/sup&gt;, FCW</td>
<td>t = 4 – 16 mm</td>
</tr>
<tr>
<td></td>
<td>α = 50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 1,0 – 2,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2,0 – 4,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Sambungan setengah V</td>
<td><img src="image" alt="Sambungan setengah V" /></td>
<td>MMA, MIG</td>
<td>t = 4 – 16 mm</td>
</tr>
<tr>
<td>No</td>
<td>Jenis sambungan</td>
<td>Gambar sambungan</td>
<td>Metode</td>
<td>Ketebalan</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| α = 50°  
C = 1,5 – 2,5 mm  
D = 2,0 – 4,0 mm  
Satu sisi | | TIG<sup>6</sup>,  
FCW | | |
| 24. | Sambungan setengah X  
α = 50°  
C = 1,0 – 1,5 mm  
D = 2,0 – 4,0 mm  
Satu sisi | | MMA,  
MIG,  
TIG<sup>6</sup>,  
FCW<sup>5</sup> | t = 4 – 30 mm |
| 25. | Sambungan setengah X  
α = 50°  
C = 1,5 – 2,5 mm  
D = 2,0 – 3,0 mm  
Dua sisi | | MMA,  
MIG,  
TIG<sup>6</sup>,  
FCW | t = 4 – 30 mm |
| 26. | Sambungan Fillet  
Tanpa root gap  
Dua sisi | | MMA,  
MIG,  
TIG,  
FCW | t < 2 mm |
| 27. | Sambungan Fillet  
D = 2,0 – 2,5 mm  
Dua sisi | | MMA,  
MIG,  
TIG,  
FCW | t = 2 – 4 mm |
<table>
<thead>
<tr>
<th>No</th>
<th>Jenis sambungan</th>
<th>Gambar sambungan</th>
<th>Metode</th>
<th>Ketebalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.</td>
<td>Sambungan setengah V</td>
<td><img src="image" alt="Gambar Sambungan V" /></td>
<td>MMA, MIG, TIG&lt;sub&gt;6&lt;/sub&gt;, FCW&lt;sub&gt;5&lt;/sub&gt;</td>
<td>t = 4 – 12 mm</td>
</tr>
<tr>
<td></td>
<td>α = 50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 1,5 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2,0 – 4,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satu sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Sambungan setengah V</td>
<td><img src="image" alt="Gambar Sambungan V" /></td>
<td>MMA, MIG, TIG&lt;sub&gt;6&lt;/sub&gt;, FCW</td>
<td>t = 4 – 16 mm</td>
</tr>
<tr>
<td></td>
<td>α = 50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 1,5 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 1,5 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Sambungan K</td>
<td><img src="image" alt="Gambar Sambungan K" /></td>
<td>MMA, MIG, TIG&lt;sub&gt;6&lt;/sub&gt;, FCW</td>
<td>t = 4 – 30 mm&lt;sub&gt;8&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>β = 50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 2,0 – 2,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2,0 – 4,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Sambungan setengah V&lt;sup&gt;7&lt;/sup&gt;</td>
<td><img src="image" alt="Gambar Sambungan V" /></td>
<td>MMA, MIG, TIG&lt;sub&gt;6&lt;/sub&gt;, FCW</td>
<td>t = 4 – 16 mm</td>
</tr>
<tr>
<td></td>
<td>α = 50°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 1,0 – 2,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = 2,0 – 3,0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dua sisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Jenis sambungan</td>
<td>Gambar sambungan</td>
<td>Metode</td>
<td>Ketebalan</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>32.</td>
<td>Setengah Pipa</td>
<td><img src="image" alt="Diagram" /></td>
<td>MMA, MIG, TIG, FCW</td>
<td>t = 4 – 16 mm</td>
</tr>
</tbody>
</table>

α = 45°
C = 1,5 – 2,0 mm
D = 1,0 – 2,0 mm
Satu sisi

1) harus memakai root gap ketika mengelas tingkatan khusus
2) alur dasar, 1 – 2 mm dalam dan lebar
3) sudut sambungan untuk tingkatan khusus adalah 60 - 70°
4) root land di atas 5 mm harus mencondongkan torch ke arah depan pengelasan
5) pengelasan menggunakan ceramic backing
6) normalnya hanya pada 1 – 3 langkah, mengikuti MIG, FCW, MMA atau SAW
7) untuk manways, viewports dan nozzles
8) ketebalan di atas 20 mm dapat dibuat sambungan X tidak simetris
9) TIG atau MMA dapat digunakan pada root runs. Gerinda dari balik. C = 30 mm
10) SAW dapat digunakan untuk jalur pengisian dan caping

**Bahan Bacaan 3 : Simbol Las**

Selain dari simbol las kampuh, ada juga simbol tambahan seperti weld all around, field weld, melt through, consumable insert (square), backing or spacer (rectangle), contour flat, convex, dan concave.

Selain simbol las kampuh dan tambahan, ada simbol pengelasan yang menunjukan perintah las secara utuh.
Berikut adalah beberapa contoh penempatan simbol las

a. Las butt joint

Gambar 5.5  Simbol las butt joint (Sumber: CWB, 2006:90)
b. Las fillet joint

<table>
<thead>
<tr>
<th>Gambar 5.6</th>
<th>Simbol las fillet joint (Sumber: CWB, 2006:91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE 1</td>
<td>[Diagram of fillet joint type 1]</td>
</tr>
<tr>
<td>TYPE 2</td>
<td>[Diagram of fillet joint type 2]</td>
</tr>
</tbody>
</table>

[Diagram of fillet joint types]

Gambar 5.6 Simbol las fillet joint (Sumber: CWB, 2006:91)

---

c. Las T-Joint

<table>
<thead>
<tr>
<th>Gambar 5.7</th>
<th>Simbol las T joint (CWB, 2006:94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOL 1</td>
<td>[Diagram of T joint symbol 1]</td>
</tr>
<tr>
<td>WELD</td>
<td>[Diagram of T joint weld]</td>
</tr>
<tr>
<td>SYMBOL 2</td>
<td>[Diagram of T joint symbol 2]</td>
</tr>
</tbody>
</table>

[Diagram of T joint symbols]

Gambar 5.7 Simbol las T joint (CWB, 2006:94)
d. Las di lapangan (*field weld*)

Gambar 5.8 | Simbol field weld (Sumber: CWB, 2006:95)
---|---

Gambar 5.9 | Simbol las kontur (Sumber: CWB, 2006:96)
---|---

e. *Finishing* las

Gambar 5.10 | Simbol finishing las (Sumber: CWB, 2006:96)
---|---
Berikut ini adalah tabel contoh-contoh penerapan simbol las secara lengkap.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Las</th>
<th>Simbol Las</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Las tumpul flens tunggal, simbolnya berupa garis tegak dan setengah lingkaran. Penempatan simbol dapat diberikan pada sisi panah dan di balik panah</td>
<td><img src="image1" alt="Simbol Las 1" /></td>
</tr>
<tr>
<td>2</td>
<td>Las tumpul alur tunggal, simbolnya dua garis tegak. Misalkan celah akar 2 mm</td>
<td><img src="image2" alt="Simbol Las 2" /></td>
</tr>
<tr>
<td>3</td>
<td>Las tumpul alur persegi, simbolnya berupa dua garis tegak. Misalkan celah akar 2 mm</td>
<td><img src="image3" alt="Simbol Las 3" /></td>
</tr>
<tr>
<td>4</td>
<td>Las tumpul alur V, simbolnya berupa tanda gambar bersudut 90°. Misalkan untuk las tumpul alur V dengan tebal 19 mm, dalam alur 16 mm, sudut alur 60°, dan celah akar 2 mm</td>
<td><img src="image4" alt="Simbol Las 4" /></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Las</td>
<td>Simbol Las</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td><strong>Las tumpul alur V ganda</strong>, simbolnya berupa tanda gambar bersudut 90°. Misalkan untuk las tumpul alur V ganda dengan dalamnya alur sisi panah 16 mm, di balik panah 9 mm, sudut alur sisi panah 60°, di balik panah 90° dan celah akar 3 mm</td>
<td><img src="image1.png" alt="Simbol Las V ganda" /></td>
</tr>
<tr>
<td>6</td>
<td><strong>Las tumpul alur tirus tunggal</strong>, simbolnya berupa tanda gambar bersudut 45°. Misalkan untuk las tumpul alur tirus tunggal dengan sisi panah dalam alur 16 mm, sudut alur 45°, di balik panah dalam alur 16 mm, sudut alur 45° dengan celah akar 2 mm,</td>
<td><img src="image2.png" alt="Simbol Las tirus tunggal" /></td>
</tr>
<tr>
<td>7</td>
<td><strong>Las tumpul alur J tunggal</strong>, simbolnya berupa garis tegak dan ¼ lingkaran. Misalkan las tumpul alur J tunggal dengan dalam alur 28 mm, sudut alur 35°, jari-jari akar 13 mm, celah akar 2 mm</td>
<td><img src="image3.png" alt="Simbol Las J tunggal" /></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Las</td>
<td>Simbol Las</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>8</td>
<td>Las tumpul alur J ganda, simbolnya berupa garis tegak dan ¼ lingkaran pada dua sisi. Misalkan las tumpul alur J ganda dengan dalam alur 24 mm, sudut alur 35°, jari-jari akar 13 mm, celah akar 3 mm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Las tumpul alur U tunggal, simbolnya berupa garis tegak dan setengah lingkaran. Misalkan las tumpul alur U tunggal dengan sudut alur 25°, jari-jari akar 6 mm, dengan celah akar 0 mm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Las tumpul alur U ganda, simbolnya berupa garis tegak dan setengah lingkaran. Misalkan las tumpul alur U tunggal dengan dalam alur 25 mm, sudut alur 25°, jari-jari akar 6 mm, dengan celah akar 0 mm</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Las tumpul terbuka V, simbolnya berupa dua ¼ lingkaran untuk V tunggal dan dua ½ lingkaran untuk V ganda.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Las</td>
<td>Simbol Las</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>12</td>
<td><strong>Las tumpul tertutup V</strong>, simbolnya berupa garis tegak dan ( \frac{3}{4} ) lingkaran untuk V tunggal, garis tegak dan ( \frac{1}{2} ) lingkaran untuk V ganda</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><strong>Las sudut berlanjut</strong>, simbolnya berupa segitiga siku-siku. Misalkan untuk panjang kaki 6 mm dan untuk panjang las 500 mm</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><strong>Las sudut terputus</strong>, simbolnya berupa segitiga siku-siku dengan ditambahkan harga panjang lasan (L) dan harga jarak lasan (P). Misalkan las sudut dua sisi dengan panjang lasan 50 mm dan jarak lasan 150 mm</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Las</td>
<td>Simbol Las</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>Manik, simbolnya berupa tinggi</td>
<td><img src="image1" alt="Manik simbol" /></td>
</tr>
<tr>
<td></td>
<td>lengkungan sama dengan ½ jari-</td>
<td><img src="image2" alt="Manik lasan" /></td>
</tr>
<tr>
<td></td>
<td>jari. Misalkan las manik dengan</td>
<td><img src="image3" alt="Manik lasan" /></td>
</tr>
<tr>
<td></td>
<td>tebal lapisan 6 mm, lebar 50</td>
<td><img src="image4" alt="Manik lasan" /></td>
</tr>
<tr>
<td></td>
<td>mm dan panjang 100 mm</td>
<td><img src="image5" alt="Manik lasan" /></td>
</tr>
<tr>
<td>16</td>
<td>Las Isi, simbolnya berupa garis</td>
<td><img src="image6" alt="Las Isi simbol" /></td>
</tr>
<tr>
<td></td>
<td>miring yang membuat sudut 60°</td>
<td><img src="image7" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td></td>
<td>terhadap garis datar. Misalkan</td>
<td><img src="image8" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td></td>
<td>untuk las isi memanjang dengan</td>
<td><img src="image9" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td></td>
<td>lebar 22 mm, panjang 50 mm,</td>
<td><img src="image10" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td></td>
<td>jarak 150 mm, sudut alur 0° dan</td>
<td><img src="image11" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td></td>
<td>dalam lasan 6 mm</td>
<td><img src="image12" alt="Las Isi lasan" /></td>
</tr>
<tr>
<td>17</td>
<td>Las pijar, simbolnya berupa</td>
<td><img src="image13" alt="Las pijar simbol" /></td>
</tr>
<tr>
<td></td>
<td>pembubuhan tulisan PRF pada</td>
<td><img src="image14" alt="Las pijar lasan" /></td>
</tr>
<tr>
<td></td>
<td>ujung akhir garis tanda.</td>
<td><img src="image15" alt="Las pijar lasan" /></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Las</td>
<td>Simbol Las</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>18</td>
<td>Las lantak, simbolnya berupa pembubuhan tulisan PRU pada ujung akhir garis tanda.</td>
<td>![PRU symbol]</td>
</tr>
<tr>
<td>19</td>
<td>Las tumpang, simbolnya berupa huruf XXX</td>
<td>![XXX symbol]</td>
</tr>
<tr>
<td>20</td>
<td>Las sudut kontur, simbolnya berupa penambahan garis pada tanda pengelasan. Garis lurus untuk kontur datar, garis cekung untuk kontur cekung</td>
<td>![Kontur symbol]</td>
</tr>
<tr>
<td>21</td>
<td>Penyelesaian akhir hasil las, simbolnya berupa pembubuhan huruf C untuk Chisel (pahat) huruf G untuk gerinda (Grinding) dan M untuk mesin (machining)</td>
<td>![Chisel, Gerinda, Machining symbols]</td>
</tr>
<tr>
<td>22</td>
<td>Pengelasan di lapangan, simbolnya ditunjukan dengan penambahan simbol &quot;dot&quot; pada sudut tanda las</td>
<td>![Dot symbol]</td>
</tr>
</tbody>
</table>

(Sumber Sunaryo, 2009:58)
PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG
(TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM

184
Bahan Bacaan 4 : Tindakan Pencegahan dan Perbaikan Distorsi

Distorsi adalah perubahan bentuk yang diakibatkan oleh panas, dalam hal ini adalah panas pengelasan. Pemuaian dan penyusutan benda kerja akan mengakibatkan logam induk melengkung (terdistorsi). Namun demikian distorsi adalah sifat alami logam dimana akan memuai jika dipanaskan dan menyusut jika didinginkan. Yang harus welder lakukan adalah mengendalikan distorsi agar sambungan las yang diinginkan sesuai dengan WPS.

Pertambahan panjang logam berbeda-beda tergantung dari koefisien muai panjang masing-masing logam walaupun dipanaskan pada suhu yang sama. Koefisien muai panjang °C besi 0,000012; alumunium 0,000026; Baja 0,000011; kuningan 0,000018; tembaga 0,000017; dan seng 0,000029.

Dengan adanya nilai koefisien muai panjang maka kita akan dapat memprediksi panjang akhir logam setelah pemuaian dengan rumus

$$L_t = L_0(1 + \alpha \times \Delta t)$$

Dimana:

$L_t$ = Panjang akhir (mm)

$L_0$ = Panjang awal (mm)

$\alpha$ = koefisien muai panjang (°C)

$\Delta t$ = perbedaan suhu (°C)

Contoh misalkan sebuah besi dengan panjang 200 dipanaskan sampai suhu 1000°C, ditanyakan berapa panjang akhirnya:

$$L_t = L_0(1 + \alpha \times \Delta t)$$

$L_t = 200(1 + 0,000012 \times 1000) = 202,4mm$

Penyebab distorsi dalam dunia industri pengelasan utamanya disebabkan oleh tegangan sisa, pengelasan dan pemotongan dengan api. Tegangan sisa ditinggalkan dari proses-proses pembuatan logam induk. Tegangan sisa yang ada dalam bahan logam induk akan menjadi masalah apabila menerima panas dari pengelasan atau pemotongan api. Tegangan sisa akan hilang secara tidak merata dan menimbulkan distorsi.
Distorsi pengelasan biasanya dapat digolongkan menjadi tiga bentuk distorsi diantaranya distorsi memanjang, melintang dan menyudut.

a. Distorsi memanjang (gambar 5.11)

Distorsi memanjang terjadi dikarenakan apabila hasil pengelasan berkontraksi dan memendek pada sepanjang garis pengelasan setelah dingin.

b. Distorsi melintang (gambar 5.12)

Distorsi melintang terjadi dikarenakan ketika mulai pengelasan pada salah satu ujung, maka sisi ujung lainnya akan mulai memanjang karena pemuaian. Untuk selanjutnya sisi-sisi logam akan saling menarik satu sama lain dan mengakibatkan distorsi

---

**Gambar 5.11** Distorsi memanjang (Sumber: Sukaini, 2013:171)

![Diagram Distorsi Memanjang](image)

**Gambar 5.12** Distorsi melintang (Sumber: Sukaini, 2013:170)

![Diagram Distorsi Melintang](image)
c. Distorsi menyudut (gambar 5.13)

Distorsi menyudut terjadi karena sudut yang dilas terjadi kontraksi. Akan lebih menyimpang apabila panas yang diberikan berlebih. Distorsi ini bisa terjadi pada sambungan fillet dan butt joint

<table>
<thead>
<tr>
<th>Gambar 5.13</th>
<th>Distorsi menyudut (Sumber: Sukaini, 2013:171)</th>
</tr>
</thead>
</table>

Distorsi menyudut (gambar 5.13)

Pencegahan distorsi dapat dilakukan sebelum pengelasan dimulai diantaranya melalui beberapa teknik di bawah ini:

a. Perencanaan yang baik

Melalui perencanaan yang baik dapat meminimalisir panas yang akan diterima logam induk. Yaitu dengan membuat efesien jalur las dan layer las, yang dapat dicapai dengan perencaan kampuh yang tepat.

b. Melakukan las catat (Tack weld)

Las catat atau tack weld adalah pengelasan yang ditujukan untuk mengklem dua logam yang akan dilas agar tidak terjadi distorsi. Biasanya las catat berupa las titik yang menyatukan kedua buah logam tersebut. Jenis logam mempengaruhi besar dan jumlah las catat. Jika las catat dilakukan dengan benar maka distorsi dapat dihindarkan gambar 5.14 menunjukan cara memberikan las catat dengan melakukan selang-seling las catat.
c. Menggunakan alat bantu *(jig and fixture)*

Alat bantu ini digunakan agar logam yang akan dilas tidak terdistorsi atau membuat posisi logam yang akan dilas memudahkan buat welder. Bentuk alat bantu tergantung dari bahan logam induk, jenis sambungan dan bentuk bahan yang akan dilas. Gambar di bawah ini adalah contoh penggunaan alat bantu las.

*d. Pengaturan letak bahan (pre setting)*

Pengaturan letak bahan (gambar 5.16) dapat dilakukan dengan cara memberikan pelat pengganjal pada logam yang akan di las, sehingga membentuk sudut berlawanan besarnya dengan distorsi yang akan terjadi. Dengan kata lain teknik ini
mengatasi sudut distorsi dengan memberikan sudut negative. Sehingga begitu terjadi distorsi yang tidak bisa dihindarkan maka logam akan dalam keadaan rata.
Distorsi juga dapat diatasi sewaktu proses pengelasan berlangsung, yaitu dengan melakukan beberapa cara berikut ini:

a. Pengaturan titik las (keseimbangan jalur las)

Pengelasan terus menerus khususnya pada pengelasan pelat dari satu ujung ke ujung lainnya akan menyebabkan distorsi pada arah memanjang kedua ujungnya. Untuk mengatasi ini biasanya dilakukan pengelasan selang seling dengan arah pengelasan yang berlawanan. Sementara itu pada pengelasan kampuh v ganda juga dilakukan dengan sisi atau permukaan yang berlawanan, sehingga kalaupun terjadi kontraksi maka akan terjadi secara seimbang pada kedua sisi.
Teknik mengurang distorsi ini ialah dengan memindahkan panas pengelasan pada logam pendingin yang biasanya terbuat dari tembaga atau perunggu, selama pengelasan logam pendingin akan menyerap panas dari benda kerja. Metode ini cocok untuk pengelasan logam tipis yang lebih cepat panas dan kemungkinan distorsi yang besar sehingga membutuhkan bantuan logam pendingin. Gambar 5.18 menunjukkan penggunaan logam pendingin untuk mengurangi panas pengelasan.

Gambar 5.18   Penggunaan logam pendingin (Sumber: Sukaini, 2013:178)
Distorsi setelah pengelasan berlangsung haruslah dihindari, tindakan pencegahan sebelum pengelasan dan teknik pengelasan sangat dianjurkan disbanding tindakan perbaikan. Karena tindakan perbaikan tidak akan semaksimal tindakan pencegahan dalam memperbaiki distorsi.


Teknik yang kedua adalah dengan penempaan logam las setelah dipanaskan. Metode ini digunakan untuk menarik dan menegangkan hasil lasan dan bagian logam yang berdekatan dengan jalur las. Walaupun jalur lasan akan sedikit mengkerut namun dapat menghilangkan distorsi. Namun perlu diingat apabila benda yang dipanaskan dan kemudian dipukul berlebihan maka mengakibatkan retak dan patah.
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Persiapan Pengelasan ini? Sebutkan!
2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!
3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!


Aktivitas Pembelajaran 1 :Menganalisis Posisi Pengelasan (1 JP)

Saudara diminta untuk mengamati gambar posisi-posisi pengelasan. Hasil pengamatan dituangkan dalam laporan tertulis (LK-01) Untuk membantu saudara mengisi LK-01, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan posisi-posisi pengelasan dan kodanya berdasarkan AWS!
2. Gambarkan ilustrasi posisi-posisi tersebut!
3. Jelaskan pula posisi badan dan gerakan tangan welder!
Setelah LK-01 terisi, diskusikan dengan rekan satu kelompok. Hasil diskusi dapat Saudara tuliskan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan. Setelah selesai, Saudara dapat melanjutkan ke **Aktivitas Pembelajaran 2**.

**Aktivitas Pembelajaran 2 : Menganalisis Sambungan dan Simbol Las (1 JP)**

Saudara diminta untuk mengamati macam-macam sambungan dan simbol las. Hasil pengamatan dituangkan dalam laporan tertulis (LK-02) Untuk membantu saudara mengisi LK-02, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan macam-macam sambungan las yang saudara ketahui!
2. Gambarkan macam-macam sambungan tersebut lengkap dengan simbol lasnya!

Setelah LK-02 terisi, diskusikan dengan rekan satu kelompok. Hasil diskusi dapat Saudara tuliskan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan. Setelah selesai, Saudara dapat melanjutkan ke **Aktivitas Pembelajaran 3**.

**Aktivitas Pembelajaran 3 : Mengidentifikasi macam-macam Distorsi dan Penyebabnya (1JP)**

Saudara diminta untuk mengidentifikasi macam-macam bentuk distorsi yang sering ditemui di lapangan. Kemudian menganalisis penyebab terjadinya distorsi. Hasil analisis dituangkan dalam laporan tertulis (LK-03) Untuk membantu saudara mengisi LK-03, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan macam-macam distorsi pada pengelasan yang saudara ketahui!
2. Jelaskan penyebab terjadinya distorsi tersebut!

Setelah LK-03 terisi, diskusikan dengan rekan satu kelompok. Hasil diskusi dapat Saudara tuliskan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan. Setelah selesai, Saudara dapat melanjutkan ke **Aktivitas Pembelajaran 4**.
Aktivitas Pembelajaran 4 : Mengidentifikasi Tindakan Pencegahan dan Perbaikan Distorsi (1JP)

Saudara diminta untuk mengidentifikasi macam-macam bentuk distorsi yang sering ditemui di lapangan. Kemudian menganalisis penyebab terjadinya distorsi. Hasil analisis dituangkan dalam laporan tertulis (LK-04) Untuk membantu saudara mengisi LK-04, dapat dipandu oleh pertanyaan berikut ini:

1. Jelaskan tindakan pencegahan distorsi sebelum pengelasan!
2. Jelaskan tindakan pencegahan distorsi selama pengelasan!
3. Jelaskan tindakan perbaikan distorsi setelah pengelasan!

Setelah LK-04 terisi, diskusikan dengan rekan satu kelompok. Hasil diskusi dapat Saudara tulisakan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan. Setelah selesai, Saudara dapat melanjutkan ke Kegiatan Pembelajaran KP-6 mengenai Praktek Pengelasan Rigi-rigi Las GTAW.

E. Rangkuman

Pada prinsipnya posisi pengelasan terbagi atas empat posisi, yaitu di bawah tangan (flat), di depan dada mendatar (horizontal-vertical), di depan dada vertikal (vertical downwards – vertical upwards) dan di atas kepala (overhead). Pemberian kode pengelasan berbeda antara standar Amerika dan Eropa, misalnya untuk sambungan pelat di bawah tangan untuk AWS diberi kode (1G) sedangkan untuk EN diberi kode (PA). Proses pengelasan, posisi pengelasan dan ketebalan logam induk harus diperhitungkan ketika kita memutuskan tipe sambungan yang akan kita buat. Sebuah sambungan memiliki parameter sudut (α), sudut (β), root face (C), root gap (D), joint surface (E), radius (R) hanya untuk sambungan U dan plate thickness (t).

Tanda gambar atau simbol pada pengelasan mutlak harus dipahami oleh semua orang yang terlibat dalam pengelasan, baik itu Welding Engineer, Welder maupun Welding Inspector. Simbol las mengacu kepada standar AWS A2.4 spesifikasi “Symbols of welding,
brazing, and nondestructive examination”. Simbol dasar las biasanya terdiri atas simbol las kampuh dan simbol las tambahan.

Distorsi adalah perubahan bentuk yang diakibatkan oleh panas, dalam hal ini adalah panas pengelasan. Pemuarian dan penyusutan benda kerja akan mengakibatkan logam induk melengkung (terdistorsi). Distorsi-distorsi las digolongkan dalam distorsi memanjang, melintang dan menyudut. Distorsi las dapat dihindari dengan proses persiapan las yang baik, teknik pengelasan yang merata dan perbaikan yang tepat setelah pengelasan.
F. Tes Formatif

1. Jelaskan macam-macam posisi pengelasan untuk pengelasan butt joint dan fillet pada pelat.

   Jawaban

   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………

2. Analisis dan gambar simbol las untuk:

   a. Las tumpul alur V dengan tebal 20 mm, dalam alur 16 mm, sudut alur 60°, dan celah akar 2 mm

   Jawaban
b. Las sudut terputus, las sudut dua sisi dengan panjang lasan 40 mm dan jarak lasan 120 mm

   Jawaban

   

   

c. Penyelesaian akhir hasil las, dengan gerinda (Grinding)

   Jawaban

   

   

d. Pengelasan di lapangan

Jawaban

3. Jelaskan bagaimana teknik pencegahan sebelum pengelasan!

Jawaban

4. Analisis jika sebuah besi dengan panjang 300 dipanaskan sampai suhu 1000°C, ditanyakan berapa panjang akhirnya?

Jawaban
5. Jelaskan teknik pencegahan distorsi pada saat pengelasan.

Jawaban

...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................

6. Jelaskan dan beri contoh tindakan perbaikan logam las yang terdistorsi!

Jawaban

...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
...........................................................................................................................................................................
G. Kunci Jawaban

1. Jelaskan macam-macam posisi pengelasan untuk pengelasan butt joint dan fillet pada pelat.

   **Jawaban**
   Posisi pengelasan untuk butt joint dapat dilihat pada gambar di bawah ini:

   ![Posisi Butt Joint](image1)

   Sedangkan posisi untuk fillet joint dapat dilihat pada gambar di bawah ini:

   ![Posisi Fillet Joint](image2)

2. Analisis dan gambar simbol las untuk:
   a. Las tumpul alur V dengan tebal 20 mm, dalam alur 16 mm, sudut alur 60°, dan celah akar 2 mm

   **Jawaban**
b. Las sudut terputus, las sudut dua sisi dengan panjang lasan 40 mm dan jarak lasan 120 mm

Jawaban

c. Penyelesaian akhir hasil las, dengan gerinda (Grinding)

Jawaban

d. Pengelasan di lapangan

Jawaban
3. Jelaskan bagaimana teknik pencegahan sebelum pengelasan!

**Jawaban**

Pencegahan distorsi dapat dilakukan sebelum pengelasan dimulai diantaranya melalui beberapa teknik perencanaan yang baik, melakukan las catat (*Tack weld*), menggunakan alat bantu (*jig and fixture*) dan pengaturan letak bahan (*pre setting*).

4. Analisis jika sebuah besi dengan panjang 300 dipanaskan sampai suhu 1000°C, ditanyakan berapa panjang akhirnya?

**Jawaban**

\[ L_t = 300 (1 + 0.000012 \times 1000) = 303.6 \text{mm} \]

5. Jelaskan teknik pencegahan distorsi pada saat pengelasan.

**Jawaban**

Distorsi pada saat pengelasan bisa diminimalisir dengan pengelasan teratur dan pemasangan logam pendingin.

6. Jelaskan dan beri contoh tindakan perbaikan logam las yang terdistorsi!

**Jawaban**

Jika distorsi sudah terjadi maka terpaksa dilakukan tindakan perbaikan. Tindakan perbaikan yang sering dilakukan ialah dengan menggunakan api dan penempaan logam sewaktu panas.
Lembar Kerja KP-05

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran posisi pengelasan, sambungan las, simbol las, tindakan pencegahan dan perbaikan distorsi? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditempatkan? Jelaskan!
<table>
<thead>
<tr>
<th>No</th>
<th>Kode Posisi Pengelasan</th>
<th>Ilustrasi gambar</th>
<th>Posisi badan dan gerakan tangan welder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Sambungan Las</td>
<td>Simbol Las</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form LK-03 Lembar Identifikasi Bentuk Distorsi Logam Las

<table>
<thead>
<tr>
<th>No</th>
<th>Bentuk Distorsi</th>
<th>Penyebab Distorsi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form LK-04 Lembar Identifikasi Tindakan Pencegahan dan Perbaikan Distorsi

<table>
<thead>
<tr>
<th>No</th>
<th>Kelompok Tindakan Pencegahan dan Perbaikan</th>
<th>Rincian Tindakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pencegahan sebelum pengelasan</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Pencegahan selama pengelasan</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Perbaikan setelah pengelasan</td>
<td></td>
</tr>
</tbody>
</table>
KEGIATAN PEMBELAJARAN 6 : PEMBUATAN RIGI-RIGI LAS

A. Tujuan

Setelah proses diklat, dengan melihat WPS dan lembar kerja peserta diklat dapat melakukan pengelasan rigi-rigi las pada pelat baja lunak dan/atau stainless steel menggunakan proses las TIG/GTAW.

B. Indikator Pencapaian Kompetensi

1. Rigi-rigi las tanpa bahan pengisi pada pelat baja lunak dan/atau stainless steel dibuat dengan benar menggunakan proses las TIG/GTAW.
2. Rigi-rigi las dengan bahan pengisi pada pelat baja lunak dan/atau stainless steel dibuat dengan benar menggunakan proses las TIG/GTAW.

C. Uraian Materi

1. Pembuatan Rigi-rigi las tanpa bahan pengisi

Tahapan-tahapan yang perlu dilakukan dan hal-hal penting yang harus dilakukan meliputi:

a. Persiapan mesin dan elektroda:

1) Perawatan ujung elektroda, untuk pengelasan pelat baja lunak menggunakan elektroda tungsten 2% thorium dengan kode warna merah gerinda ujung elektroda hingga runcing.

2) Pemasangan elektroda pada torch, pasang elektroda sampai ujungnya keluar kira kira 5 mm dari Nozzle.

3) Penyetelan mesin las, yakinkan bahwa masing masing saklar dan dial terpasang pada posisi yang diharapkan.

4) Setel tombol pemilihan AC / DC ke DC.

5) Setel banyaknya aliran gas pada 5 ℓ / menit.

6) Setel arus pengelasan sekitar 80-90 A.
b. **Penyalaan busur las**

1) Letakkan *nozzle* sekitar 10-15mm didepan titik awal las.
2) Pakai helm pelindung.
3) Tegakkkan *torch* sedikit.
4) Jangan sentuhkan elektroda pada benda kerja.
5) Tekan tombol *torch*.

<table>
<thead>
<tr>
<th>Gambar 6.1</th>
<th>Penyalaan busur</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Gambar 6.1" /></td>
<td><img src="image" alt="Gambar 6.1" /></td>
</tr>
</tbody>
</table>

c. **Penempatan Torch ke posisi awal las**

1) Arahkan balik *torch* ke ujung awal las.
2) Pegang *torch* pada posisi tegak 90° terhadap permukaan benda kerja dan dimiringkan sekitar 10°- 20° terhadap arah garis pengelasan.
3) Jaga panjang busur sekitar 3-5 mm.
4) Lelehkan ujung awal pengelasan.

<table>
<thead>
<tr>
<th>Gambar 6.2</th>
<th>Permulaan pengelasan</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Gambar 6.2" /></td>
<td><img src="image" alt="Gambar 6.2" /></td>
</tr>
</tbody>
</table>

d. **Pelelehan logam**

1) Jaga lebar pelelehan logam sekitar 6-8 mm.

---

211

**PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG**
**(TUNGSTEN INERT GAS)**
TEKNIK MESIN – FABRIKASI LOGAM
2) Lelehkan sepanjang garis pengelasan.
e. Mematikan busur
   1) Lepas jari anda dari saklar torch.
   2) Jangan gerakkan torch dari kawah las selama periode after flow (aliran gas akhir).

f. Pemeriksaan
   1) Periksa dan pastikan apakah bentuk dan lebar pelelehan rata.
   2) Periksa dan pastikan apakah bentuk las-lasan atau lelehan bagian belakang rata.
   3) Periksa dan pastikan apakah permukaan las teroksidasi.
2. Pengisian dan las manik-manik

Tahapan-tahapan yang perlu dilakukan dan hal-hal penting yang harus dilakukan meliputi:

1. Runcingkan ujung elektroda
2. Pasang elektroda pada torch
3. Setel mesin las pada kondisi yang dikehendaki
4. Nyalakan busur
5. Pengelasan
   a. Letakkan kawat pengisi ke depan ujung api dari elektroda tungsten.
   b. Setelah meletakkan dengan panjang yang optimal, angkat sedikit kawat pengisi.
   c. Ulangi secara terus menerus untuk membuat lagi las-lasan sehingga terbentuk manik-manik las.

<table>
<thead>
<tr>
<th>Gambar 6.5</th>
<th>Pengisian kawah las</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image.png" alt="Diagram Pengelasan Las TIG" /></td>
<td>Arah pengelasan (70°-80°) Rigidepan Logam cair Rigibelakang</td>
</tr>
</tbody>
</table>

6. Pengisian kawah las
   a. Matikan busur ketika sampai pada ujung akhir las.
   b. Nyalakan busur lagi dan tambahkan lagi kawat pengisi.
   c. Matikan busur.
   d. Nyalakan busur lagi dan tambahkan lagi kawat pengisi secukupnya.
e. Ulangi lagi sampai tingginya las lasan sama dengan tinggi las-lasan sebelumnya
7. Pemeriksaan
   a. Periksa bentuk alur las dan keragamannya.
   b. Periksa dan pastikan apakah lebar dan tinggi las-lasan optimal atau sudah memenuhi persyaratan.
   c. Periksa apakah ada takik dan overlap pada hasil las.
   d. Periksa apakah kawah las terisi penuh atau kurang dari yang dipersyaratkan.
D. Aktivitas Pembeelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembeelajaran (Dikusisk Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran *Pengelasan Rigi-Rigi Las TIG/GTAW* ini? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

5. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

6. Apa bukti yang harus diunjuk kerja oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditemokan? Jelaskan!

Jawablah pertanyaan-pertanyaan di atas dengan menggunakan *LK-00*. Jika Saudara bisa menjawab pertanyaan-pertanyaan di atas dengan baik, maka Saudara bisa melanjutkan ke *aktivitas pembelajaran 1*.

Aktivitas Pembelajaran 1 : Pengelasan Rigi-Rigi Las Tanpa Bahan Pengisi (5 JP)

Aktivitas Pembelajaran 2 : Pengelasan Rigi-Rigi Las Dengan Bahan Pengisi (5 JP)

E. Rangkuman


Proses pengelasan rigi-rigi las dengan bahan pengisi pada pelat baja lunak menggunakan elektroda tungsten 2% thorium dengan kode warna merah. Bahan pengisi yang digunakan seri ER 70S. Arus yang digunakan arus DC, dengan besar arus disesuaikan dengan tebal benda kerja. Arah pengelasan adalah arah maju (dari kiri ke kanan). Hasil kawah yang diharapkan adalah lebar 6-8 mm. Proses latihan dilakukan berulang-ulang sampai bisa.
F. Tes Formatif

1. Jelaskan persiapan pengelasan rigi-rigi las TIG/GTAW tanpa bahan pengisi

   Jawaban
   ..................................................................................................................................................
   ..................................................................................................................................................
   ..................................................................................................................................................

2. Jelaskan proses pengelasan dan pemeriksaan hasil rigi-rigi las TIG/GTAW tanpa bahan pengisi

   Jawaban
   ..................................................................................................................................................
   ..................................................................................................................................................
   ..................................................................................................................................................

3. Jelaskan persiapan pengelasan rigi-rigi las TIG/GTAW dengan bahan pengisi

   Jawaban
   ..................................................................................................................................................
   ..................................................................................................................................................
   ..................................................................................................................................................

4. Jelaskan proses pengelasan dan pemeriksaan hasil rigi-rigi las TIG/GTAW dengan bahan pengisi

   Jawaban
   ..................................................................................................................................................
   ..................................................................................................................................................
   ..................................................................................................................................................
G. Kunci Jawaban

1. Jelaskan persiapan pengelasan rigi-rigi las GTAW tanpa bahan pengisi!

   **Jawaban**
   
   a. Siapkan logam induk yang dilas, jika perlu bersihkan dengan sikat baja dan ampelas.
   
   b. Perawatan ujung elektroda, untuk pengelasan pelat baja lunak menggunakan elektroda tungsten 2% thorium dengan kode warna merah gerinda ujung elektroda hingga runcing.
   
   c. Pemasangan elektroda pada torch, pasang elektroda sampai ujungnya keluar kira kira 5 mm dari Nozzle.
   
   d. Penyetelan mesin las, yakinkan bahwa masing masing saklar dan dial terpasang pada posisi yang diharapkan.

2. Jelaskan proses pengelasan dan pemeriksaan hasil rigi-rigi las GTAW tanpa bahan pengisi!

   **Jawaban**
   
   a. Penyalaan busur las
      
      Letakkan nozzle sekitar 10-15mm di depan titik awal las, pakai helm pelindung, tegakkan torch sedikit, jangan sentuhkan elektroda pada benda kerja, dan tekan tombol torch.
   
   b. Penempatan Torch ke posisi awal las
      
      Arahkan balik torch ke ujung awal las, pegang torch pada posisi tegak 90° terhadap permukaan benda kerja dan dimiringkan sekitar 10°- 20° terhadap arah garis pengelasan, jaga panjang busur sekitar 3-5 mm, dan lelehkan ujung awal pengelasan.
   
   c. Pelelehan logam
      
      Jaga lebar pelelehan logam sekitar 6-8 mm dan lelehkan sepanjang garis pengelasan.
   
   d. Mematikan busur
      
      Lepas jari anda dari saklar torch, dan jangan gerakkan torch dari kawah las selama periode after flow (aliran gas akhir).
3. Jelaskan persiapan pengelasan rigi-rigi las GTAW dengan bahan pengisi!

**Jawaban**

a. Runcingkan ujung elektroda
b. Pasang elektroda pada *torch*

c. Setel mesin las pada kondisi yang dikehendaki

d. Nyalakan busur

4. Jelaskan proses pengelasan dan pemeriksaan hasil rigi-rigi las GTAW dengan bahan pengisi!

**Jawaban**


b. Pengisian kawah las: Matikan busur ketika sampai pada ujung akhir las, nyalakan busur lagi dan tambahkan lagi kawat pengisi, matikan busur, nyalakan busur lagi dan tambahkan lagi kawat pengisi secukupnya, ulangi lagi sampai tingginya las lasan sama dengan tinggi las-lasan sebelumnya

c. Pemeriksaan: periksa bentuk alur las dan keragamannya, periksa dan pastikan apakah lebar dan tinggi las-lasan optimal atau sudah memenuhi persyaratan, periksa apakah ada takik dan overlap pada hasil las, periksa apakah kawah las terisi penuh atau kurang dari yang dipersyaratkan.
Lembar Kerja KP-06

LK - 00

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pengelasan Rigi-rigi las \textit{TIG/GTAW}? Sebutkan!

……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!

……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
Form LK-01.P Lembar Kerja Pengelasan Rigi-Rigi Las TIG/GTAW tanpa Bahan

Pengisi

A. Tujuan Praktikum
Setelah mempelajari dan berlatih membuat rigi las tanpa bahan tambah pada pelat baja lunak, Saudara diharapkan mampu:
1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada torch
6. Menyalakan busur las
7. Membuat Rigi Las tanpa Bahan Tambah pada Pelat Baja Lunak
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan
1. Menyiapkan mesin las TIG/GTAW dan perlengkapannya
2. Menyiapkan alat bantu las
3. Menyiapkan alat pelindung diri
4. Menyiapkan Lembar Kerja
5. Menyiapkan pelat baja lunak ukuran 100 x 200 x 2 mm (1 buah)

C. Sikap dan Keselamatan Kerja
Menggunakan elektroda sesuai dengan tebal bahan
Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
Memperhatikan peletakan dan posisi torch terhadap lingkungan kerja dan benda kerja
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja

D. Proses Kerja

Menyiapkan peralatan las TIG/GTAW, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja

Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 5 CFH

Mengatur ampere diantara 80 - 90 amp

Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja

Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2mm

Mengatur sudut pembakar diantara 75°-85° terhadap jalur las

Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja

Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan

Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukkan “0”

E. Hasil Kerja

<table>
<thead>
<tr>
<th>Lebar jalur las</th>
<th>5 mm, tol +1, -0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelurusan jalur</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>las</td>
<td></td>
</tr>
<tr>
<td>Pencairan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
<tr>
<td>Penetrasi</td>
<td>Maks. Rata dengan permukaan bawah</td>
</tr>
<tr>
<td>Kebersihan</td>
<td>Tidak ada percikan dan terak las yang menempel pada daerah pengelasan</td>
</tr>
</tbody>
</table>
F. Gambar Kerja
### Form Laporan Praktikum

#### Judul Praktikum

#### Nama Peserta

#### Kelas

#### Waktu Praktikum

#### Bahan

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

#### Peralatan

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan peralatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

#### Keselamatan Kerja

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan peralatan keselamatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

#### Proses Kerja

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Uraikan tahapan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

#### Hasil Kerja

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Uraikan hasil kerja yang diinginkan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

#### Gambar Kerja

---
Form LK-02.P Lembar Kerja Pengelasan Rigi-Rigi Las TIG/GTAW dengan
Bahan Pengisi

A. Tujuan Praktikum

Setelah mempelajari dan berlatih membuat rigi las dengan bahan tambah pada pelat baja lunak, peserta diklat diharapkan mampu:

1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada torch
6. Menyalakan busur las
7. Membuat Rigi Las dengan Bahan Tambah pada Pelat Baja Lunak
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan

- Menyiapkan mesin las TIG/GTAW dan perlengkapannya
- Menyiapkan alat bantu las
- Menyiapkan alat pelindung diri
- Menyiapkan WPS/Jobsheet/Gambar kerja
- Menyiapkan pelat baja lunak ukuran 80 x 120 x 2 mm (1 buah)
- Menyiapkan bahan tambah baja lunak Ø 2,4 mm

C. Sikap dan Keselamatan Kerja

- Menggunakan elektroda sesuai dengan tebal bahan
- Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
- Memperhatikan peletakan dan posisi torch terhadap lingkungan kerja dan benda kerja
- Bekerja dengan bersih dan rapi
- Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
- Membersihkan alat dan tempat kerja setelah selesai bekerja
D. Proses Kerja

Menyiapkan peralatan las TIG/GTAW, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja

Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 5 CFH disesuaikan dengan tebal pelat

Mengatur ampere diantara 80 – 90 amp

Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja

Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2mm

Mengatur sudut pembakar diantara 75°-85° terhadap jalur las

Mengatur sudut bahan tambah 15°

Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja

Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan

Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukan “0”

E. Hasil Kerja

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>Perincian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebar jalur las</td>
<td>5 mm, tol +1, -0</td>
</tr>
<tr>
<td>Kelurusan jalur las</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>Pencairkan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
<tr>
<td>Tinggi jalur lasan</td>
<td>2 mm, tol +1, -0</td>
</tr>
<tr>
<td>Penetrasi</td>
<td>Maks. Rata dengan permukaan bawah</td>
</tr>
<tr>
<td>Kebersihan</td>
<td>Tidak ada percikan dan terak las yang menempel pada daerah pengelasan</td>
</tr>
</tbody>
</table>
F. Gambar Kerja
G. Form Laporan Praktikum

Judul Praktikum : PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG (TUNGSTEN INERT GAS)  
Nama Peserta : 
Kelas : 
Waktu Praktikum : 

<table>
<thead>
<tr>
<th></th>
<th>Bahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Peralatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan peralatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Keselamatan Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Sebutkan peralatan keselamatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Proses Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Uraikan tahapan kerja yang digunakan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hasil Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(Uraikan hasil kerja yang diinginkan)</td>
</tr>
<tr>
<td>2.</td>
<td>..........................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gambar Kerja</th>
</tr>
</thead>
</table>
KEGIATAN PEMBELAJARAN 7 : PENGELEASAN SAMBUNGAN TUMPUL (*BUTT JOINT*) 1G DAN 2G TIG/GTAW PADA PELAT BAJA LUNAK DAN/ATAU STAINLESS STEEL

A. Tujuan

Setelah proses diklat, dengan melihat lembar kerja peserta diklat dapat melakukan pengelasan sambungan tumpul (*butt*) 1G dan 2G pada pelat baja lunak dan atau Stainless Steel.

B. Indikator Pencapaian Kompetensi

1. Sambungan tumpul (*butt*) 1G pada pelat baja lunak dan/atau Stainless Steel menggunakan proses las TIG/GTAW dibuat dengan baik.
2. Sambungan tumpul (*butt*) 2G pada pelat baja lunak dan atau Stainless Steel dapat dilas dengan baik.

C. Uraian Materi

Di bawah ini adalah gambar sambungan tumpul (*Butt joint*) 1G dan 2G

<table>
<thead>
<tr>
<th>Gambar 7.1</th>
<th>Sambungan Tumpul 1G dan 2G</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="AWS: 1G EN: PA" /></td>
<td><img src="image2" alt="AWS: 2G EN: PC" /></td>
</tr>
</tbody>
</table>

Tahapan-tahapan yang harus dilakukan dalam mengelas sambungan tumpul 1G dan 2G adalah meliputi:

1. **Persiapan Bahan**
   
   Sebagai langkah persiapan, perhatikan hal-hal berikut ini:
   
   a. Siapkan dua logam dasar dengan kampuhnya
b. Siapkan satu potong logam penahan bagian belakang.
c. Berikan bevel 3° pada salah satu sisi penahan belakang.
d. Hilangkan kotoran bagian belakang logam dasar tersebut dengan kikir tangan.
e. Kikir kampuh 30° untuk kampuh V.

f. Pemberian las ikat
   1) Tempelkan kedua logam dasar diatas lempengan penahannya.
   2) Diantara dua logam itu, berikan celah 4 mm.
   3) Berikan las ikat pada bagian belakang logam dengan penahannya dengan hati-hati jangan sampai merusak pengelasan bagian depan.
   4) Pastikan jika ada perubahan posisi hanya ± 3°.
2. Persiapan mesin dan elektroda:
   a. Perawatan ujung elektroda, untuk pengelasan pelat baja lunak menggunakan elektroda tungsten 2% thorium dengan kode warna merah gerinda ujung elektroda hingga runcing.
   b. Pemasangan elektroda pada torch, pasang elektroda sampai ujungnya keluar kira-kira 5 mm dari Nozzle.
   c. Penyetelan mesin las, yakinkan bahwa masing masing saklar dan dial terpasang pada posisi yang diharapkan.
   d. Setel tombol pemilihan AC / DC ke DC.
   e. Setel banyaknya aliran gas sesuai jenis dan ketebalan bahan.
   f. Setel arus pengelasan sesuai jenis dan ketebalan bahan.

3. Penyalaan busur las
   a. Letakkan nozzle sekitar 10-15mm didepan titik awal las.
   b. Pakai helm pelindung.
   c. Tegakkan torch sedikit.
   d. Jangan sentuhkan elektroda pada benda kerja.
   e. Tekan tombol torch.
4. **Penempatan Torch ke posisi awal las**
   a. Arahkan balik torch ke ujung awal las.
   b. Pegang torch pada posisi tegak 90° terhadap permukaan benda kerja dan dimiringkan sekitar 10°-20° terhadap arah garis pengelasan.
   c. Jaga panjang busur sekitar 3-5 mm.
   d. Lelehkan ujung awal pengelasan.

5. **Pengelasan**
   a. Letakkan kawat pengisi ke depan ujung api dari elektroda tungsten.
   b. Setelah meletakkan dengan panjang yang optimal, angkat sedikit kawat pengisi.
   c. Ulangi secara terus menerus untuk membuat lagi las-lasan sehingga terbentuk manik-manik las.
6. Pengisian kawah las
   a. Matikan busur ketika sampai pada ujung akhir las.
   b. Nyalakan busur lagi dan tambahkan lagi kawat pengisi.
   c. Matikan busur.
   d. Nyalakan busur lagi dan tambahkan lagi kawat pengisi secukupnya.
   e. Ulangi lagi sampai tingginya las lasan sama dengan tinggi las-lasan sebelumnya

7. Pemeriksaan
   a. Periksa bentuk alur las dan keragamannya.
   b. Periksa dan pastikan apakah lebar dan tinggi las-lasan optimal atau sudah memenuhi persyaratan.
   c. Periksa apakah ada takik dan overlap pada hasil las.
d. Periksa apakah kawah las terisi penuh atau kurang dari yang dipersyaratkan.

D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)
Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:
1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pengelasan sambungan tumpul (butt joint) 1G dan 2G TIG/GTAW pada pelat baja lunak dan Stainless Steel ini? Sebutkan!
2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!
3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!


Aktivitas Pembelajaran 1 : Pengelasan Sambungan Tumpul (Butt joint)

1G TIG/GTAW pada Pelat Baja Lunak dan atau Stainless Steel (5 JP)
Saudara diminta untuk mengamati lembar kerja (LK-01.P), Kemudian didiskusikan dengan instruktur bagaimana proses kerja praktikum. Setelah itu kemudian melakukan praktik pengelasan sambungan tumpul (butt joint) 1G GTAW pada pelat baja lunak. Setelah selesai saudara diminta melakukan penilaian sendiri terhadap proses praktikum dan melaporkan kegiatan praktikum. Setelah melaksanakan LK-01.P saudara dapat
Aktivitas Pembelajaran 2 : Pengelasan Sambungan Tumpul (Butt joint) 2G TIG/GTAW pada Pelat Baja Lunak dan atau Stainless Steel (5 JP)


E. Rangkuman

Pengelasan sambungan tumpul 1G dan 2G TIG/GTAW pada pelat baja lunak dan Stainless Steel merupakan keterampilan dasar pengelasan sambungan pada proses las TIG/GTAW. Agar mendapatkan hasil yang maksimal maka perlu diperhatikan tahapan persiapan material, persiapan mesin, proses las catat, pengisian kawah las dan proses mematikan torch. Setelah pengelasan sambungan dilakukan maka diakhiri dengan pemeriksaan baik secara visual maupun test DT dan NDT.
F. Tes Formatif

1. Jelaskan persiapan pengelasan sambungan tumpul 1G las TIG/GTAW!
   
   **Jawaban**
   
   .................................................................
   .................................................................
   .................................................................

2. Jelaskan proses pengelasan dan pemeriksaan hasil pengelasan sambungan tumpul 1G las TIG/GTAW!
   
   **Jawaban**
   
   .................................................................
   .................................................................
   .................................................................

3. Gambarkan ilustrasi posisi pengelasan sambungan tumpul 2G las TIG/GTAW!
   
   **Jawaban**
   
   .................................................................
   .................................................................
   .................................................................

4. Gambarkan ilustrasi proses pengelasan sambungan tumpul 2G las TIG/GTAW!
   
   **Jawaban**
   
   .................................................................
   .................................................................
   .................................................................
   .................................................................
G. Kunci Jawaban

1. Jelaskan persiapan pengelasan sambungan tumpul 1G las GTAW!

Jawaban
a. Siapkan dua logam dasar dengan kampuhnya
b. Siapkan satu potong logam penahan bagian belakang.
c. Berikan bevel 3° pada salah satu sisi penahan belakang.
d. Hilangkan kotoran bagian belakang logam dasar tersebut dengan kikir tangan.
e. Kikir kampuh 30° untuk kampuh V.
f. Tempelkan kedua logam dasar diatas lempengan penahannya.
g. Diantara dua logam itu, berikan celah 4 mm.
h. Berikan las ikat pada bagian belakang logam dengan penahannya dengan hati-hati jangan sampai merusak pengelasan bagian depan.
i. Pastikan jika ada perubahan posisi hanya ± 3°.

2. Jelaskan proses pengelasan dan pemeriksaan hasil pengelasan sambungan tumpul 1G las GTAW!

Jawaban
a. Letakkan kawat pengisi ke depan ujung api dari elektroda tungsten.
b. Setelah meletakkan dengan panjang yang optimal, angkat sedikit kawat pengisi.
c. Ulangi secara terus menerus untuk membuat lagi las-lasan sehingga terbentuk manik-manik las.
e. Matikan busur ketika sampai pada ujung akhir las.
f. Nyalakan busur lagi dan tambahkan lagi kawat pengisi.
g. Matikan busur.
h. Nyalakan busur lagi dan tambahkan lagi kawat pengisi secukupnya.
i. Ulangi lagi sampai tingginya las lasan sama dengan tinggi las-lasan sebelumnya
j. Periksa bentuk alur las dan keragamannya.
k. Periksa dan pastikan apakah lebar dan tinggi las-lasan optimal atau sudah memenuhi persyaratan.
I. Periksa apakah ada takik dan overlap pada hasil las.

m. Periksa apakah kawah las terisi penuh atau kurang dari yang dipersyaratkan.

3. Gambarkan ilustrasi posisi pengelasan sambungan tumpul 2G las GTAW!

   Jawaban

![AWS: 2G EN: PC](image)

4. Gambarkan ilustrasi proses pengelasan sambungan tumpul 2G las GTAW!

   Jawaban

![Ilustrasi proses pengelasan sambungan tumpul 2G las GTAW](image)
1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pengelasan Sambungan Tumpul (Butt joint) 1G dan 2G TIG/GTAW pada Pelat Baja Lunak dan atau Stainless Steel? Sebutkan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!

………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………
Form LK-02.P Lembar Kerja Pengelasan Sambungan Tumpul (Butt joint) 1G TIG/GTAW pada Pelat Baja Lunak

A. Tujuan Praktikum
Setelah mempelajari dan berlatih membuat sambungan tumpul 1G pada pelat baja lunak, peserta diklat diharapkan mampu:
1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada torch
6. Menyalakan busur las
7. Mengelas Sambungan Tumpul (Butt joint) 1G TIG/GTAW pada Pelat Baja Lunak
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan
Menyiapkan mesin las TIG/GTAW/TIG dan perlengkapannya
Menyiapkan alat bantu las
Menyiapkan alat pelindung diri
Menyiapkan WPS/Jobsheet/Gambar kerja
Menyiapkan pelat baja lunak ukuran 80 x 120 x 2 mm (2 buah)
Menyiapkan bahan tambah baja lunak Ø 2,4 mm

C. Sikap dan Keselamatan Kerja
Menggunakan elektroda sesuai dengan tebal bahan
Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
Memperhatikan peletakan dan posisi torch terhadap lingkungan kerja dan benda kerja
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja

D. Proses Kerja

Menyiapkan peralatan las GTAW/TIG, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja
Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 8 – 10 Cfh disesuaikan dengan tebal pelat
Mengatur ampere diantara 80-140 amp
Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja
Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2mm
Mengatur sudut pembakar diantara 75°-85° terhadap jalur las
Mengatur sudut bahan tambah 15°
Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja
Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan
Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukan “0″
E. Hasil Kerja

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebar jalur las</td>
<td>5 mm, tol +1, -0</td>
</tr>
<tr>
<td>Kelurusan jalur las</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>Pencairan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
<tr>
<td>Tinggi jalur lasan</td>
<td>2 mm, tol +1, -0</td>
</tr>
<tr>
<td>Penetrasi</td>
<td>Maks. Rata dengan permukaan bawah</td>
</tr>
<tr>
<td>Kebersihan</td>
<td>Tidak ada percikan dan terak las yang menempel pada daerah pengelasan</td>
</tr>
</tbody>
</table>

F. Gambar Kerja

![Gambar Kerja](image.png)
G. Form Laporan Praktikum

Judul Praktikum :  
Nama Peserta :  
Kelas :  
Waktu Praktikum :  

<table>
<thead>
<tr>
<th>I</th>
<th>Bahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)</td>
</tr>
<tr>
<td>2</td>
<td>........................................................................................................</td>
</tr>
<tr>
<td>3</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II</th>
<th>Peralatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Sebutkan peralatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2</td>
<td>........................................................................................................</td>
</tr>
<tr>
<td>3</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III</th>
<th>Keselamatan Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Sebutkan peralatan keselamatan kerja yang digunakan)</td>
</tr>
<tr>
<td>2</td>
<td>........................................................................................................</td>
</tr>
<tr>
<td>3</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>Proses Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Uraikan tahapan kerja yang digunakan)</td>
</tr>
<tr>
<td>2</td>
<td>........................................................................................................</td>
</tr>
<tr>
<td>3</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Hasil Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Uraikan hasil kerja yang diinginkan)</td>
</tr>
<tr>
<td>2</td>
<td>........................................................................................................</td>
</tr>
<tr>
<td>3</td>
<td>Dst.</td>
</tr>
</tbody>
</table>
VI | Gambar Kerja

Form LK-03.P Lembar Kerja Pengelasan Sambungan Tumpul (Butt joint) 2G TIG/GTAW pada Pelat Stainless Steel

A. Tujuan Praktikum
Setelah mempelajari dan berlatih membuat sambungan tumpul 2G pada pelat Stainless Steel, peserta diklat diharapkan mampu:
1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada torch
6. Menyalakan busur las
7. **Mengelas Sambungan Tumpul (Butt joint) 2G TIG/GTAW pada Pelat Stainless Steel**
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan
- Menyiapkan mesin las GTAW/TIG dan perlengkapannya
- Menyiapkan alat bantu las
- Menyiapkan alat pelindung diri
- Menyiapkan WPS/Jobsheet/Gambar kerja
- Menyiapkan pelat Stainless Steel ukuran 80 x 120 x 2 mm (2 buah)
- Menyiapkan bahan tambah baja lunak Ø 2,4 mm

C. Sikap dan Keselamatan Kerja
- Menggunakan elektroda sesuai dengan tebal bahan
- Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
Memperhatikan peletakan dan posisi torch terhadap lingkungan kerja dan benda kerja
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja

D. Proses Kerja

Menyiapkan peralatan las GTAW/TIG, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja
Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 10 – 15 Cfh disesuaikan dengan tebal pelat
Mengatur ampere diantara 80 -120 amp
Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja
Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2mm
Mengatur sudut pembakar diantara 75°-85° terhadap jalur las
Mengatur sudut bahan tambah 15°
Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja
Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan
Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukan “0”
E. Hasil Kerja

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Spesifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebar jalur las</td>
<td>5 mm, tol +1, -0</td>
</tr>
<tr>
<td>Kelurusan jalur las</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>Pencairan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
<tr>
<td>Tinggi jalur lasan</td>
<td>2 mm, tol +1, -0</td>
</tr>
<tr>
<td>Penetrasi</td>
<td>Maks. Rata dengan permukaan bawah</td>
</tr>
<tr>
<td>Kebersihan</td>
<td>Tidak ada percikan dan terak las yang menempel pada daerah pengelasan</td>
</tr>
</tbody>
</table>

F. Gambar Kerja
G. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta     :</td>
<td></td>
</tr>
<tr>
<td>Kelas            :</td>
<td></td>
</tr>
<tr>
<td>Waktu Praktikum  :</td>
<td></td>
</tr>
</tbody>
</table>

I Bahan

1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)
2. .................................................................
3. Dst.

II Peralatan

1. (Sebutkan peralatan kerja yang digunakan)
2. .................................................................
3. Dst.

III Keselamatan Kerja

1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. .................................................................
3. Dst.

IV Proses Kerja

1. (Uraikan tahapan kerja yang digunakan)
2. .................................................................
3. Dst.

V Hasil Kerja

1. (Uraikan hasil kerja yang diinginkan)
2. .................................................................
3. Dst.
VI Gambar Kerja

KEGIATAN PEMBELAJARAN 8 : PRAKTEK PENGELASAN SAMBUNGAN SUDUT (FILLET JOINT) 1F DAN 2F TIG/GTAW PADA PELAT BAJA LUNAK DAN ATAU STAINLESS STEEL

A. Tujuan

Setelah proses diklat, dengan melihat lembar kerja peserta diklat dapat melakukan pengelasan sambungan sudut (fillet joint) 1F dan 2F TIG/GTAW pada pelat baja lunak dan atau Stainless Steel.

B. Indikator Pencapaian Kompetensi

1. Sambungan sambungan sudut (fillet joint) 1F pada pelat baja lunak dan atau Stainless Steel dapat dibuat dengan baik.
2. Sambungan sambungan sudut (fillet joint) 2F pada pelat baja lunak dan atau Stainless Steel dapat dibuat dengan baik.

C. Uraian Materi

Di bawah ini adalah gambar sambungan sudut (fillet joint) 1F dan 2F

<table>
<thead>
<tr>
<th>Gambar 8.1</th>
<th>Sambungan sudut 1F dan 2F</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Gambar 8.1" /></td>
<td><img src="image2.png" alt="Gambar 8.1" /></td>
</tr>
</tbody>
</table>

AWS: 1F
EN: PA

AWS: 2F
EN: PB

Tahapan-tahapan yang harus dilakukan dalam mengelas sambungan tumpul 1G dan 2G adalah meliputi:
1. **Persiapan Bahan**
   Sebagai langkah persiapan, perhatikan hal-hal berikut ini:
   
   a. Siapkan dua logam dasar dengan kampuhnya
   b. Siapkan satu potong logam penahan bagian belakang.
   c. Berikan bevel 30° pada salah satu sisi penahan belakang.
   d. Hilangkan kotoran bagian belakang logam dasar tersebut dengan kikir tangan.
   e. Kikir kampuh 30° untuk kampuh V.

   **Gambar 8.2** Persiapan permukaan logam pada pengelasan tumpul posisi datar

   **Gambar 8.3** Persiapan awal pengelasan tumpul kampuh V posisi datar dengan penahan belakang

2. **Pemberian las ikat**
   
   a. Tempelkan kedua logam dasar diatas lempengan penahannya.
   b. Diantara dua logam itu, berikan celah 4 mm.
c. Berikan las ikat pada bagian belakang logam dengan penahannya dengan hati-hati jangan sampai merusak pengelasan bagian depan.

d. Pastikan jika ada perubahan posisi hanya ± 3°.

3. Persiapan mesin dan elektroda:
   a. Perawatan ujung elektroda, untuk pengelasan pelat baja lunak menggunakan elektroda tungsten 2% thorium dengan kode warna merah gerinda ujung elektroda hingga runcing.
   b. Pemasangan elektroda pada Torch, pasang elektroda sampai ujungnya keluar kira kira 5 mm dari Nozzle.
   c. Penyetelan mesin las, yakinkan bahwa masing masing saklar dan dial terpasang pada posisi yang diharapkan.
   d. Setel tombol pemilihan AC / DC ke DC.
   e. Setel banyaknya aliran gas sesuai jenis dan ketebalan bahan.
   f. Setel arus pengelasan sesuai jenis dan ketebalan bahan.

4. Penyalaan busur las
   a. Letakkan nozzle sekitar 10-15mm didepan titik awal las.
   b. Pakai helm pelindung.
   c. Tegakkan Torch sedikit.
   d. Jangan sentuhkan elektroda pada benda kerja.
   e. Tekan tombol Torch.
5. **Penempatan Torch ke posisi awal las**
   a. Arahkan balik Torch ke ujung awal las.
   b. Pegang Torch pada posisi tegak 90° terhadap permukaan benda kerja dan dimiringkan sekitar 10°-20° terhadap arah garis pengelasan.
   c. Jaga panjang busur sekitar 3-5 mm.
   d. Lelehkan ujung awal pengelasan.

6. **Pengelasan**
   a. Letakkan kawat pengisi ke depan ujung api dari elektroda tungsten.
   b. Setelah meletakkan dengan panjang yang optimal, angkat sedikit kawat pengisi.
   c. Ulangi secara terus menerus untuk membuat lagi las-lasan sehingga terbentuk manik-manik las.
7. Pengisian kawah las
   a. Matikan busur ketika sampai pada ujung akhir las.
   b. Nyalakan busur lagi dan tambahkan lagi kawat pengisi.
   c. Matikan busur.
   d. Nyalakan busur lagi dan tambahkan lagi kawat pengisi secukupnya.
   e. Ulangi lagi sampai tingginya las lasan sama dengan tinggi las-lasan sebelumnya.

8. Pemeriksaan
   a. Periksa bentuk alur las dan keragamannya.
   b. Periksa dan pastikan apakah lebar dan tinggi las-lasan optimal atau sudah memenuhi persyaratan.
   c. Periksa apakah ada takik dan overlap pada hasil las.
   d. Periksa apakah kawah las terisi penuh atau kurang dari yang dipersyaratkan.
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pengelasan sambungan sudut (*fillet joint*) 1F dan 2F *TIG/GTAW* pada pelat baja lunak dan *Stainless Steel* ini? Sebutkan!

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!


Aktivitas Pembelajaran 1 : Pengelasan Sambungan Sudut (*fillet joint*) 1F *TIG/GTAW* pada Pelat Baja Lunak (5 JP)

Saudara diminta untuk mengamati lembar kerja (LK-01.P), Kemudian didiskusikan dengan instruktur bagaimana proses kerja praktikum. Setelah itu kemudian melakukan praktik pengelasan sambungan sudut (*fillet joint*) 1F *TIG/GTAW* pada pelat baja lunak.

**Aktivitas Pembelajaran 2 : Sambungan Sudut *(Fillet joint)* 2F TIG/GTAW pada Pelat Stainless Steel (5 JP)**


**E. Rangkuman**

Pengelasan sambungan sudut 1F dan 2F TIG/GTAW pada pelat baja lunak atau Stainless Steel merupakan keterampilan dasar pengelasan sambungan pada proses las TIG/GTAW. Agar mendapatkan hasil yang maksimal maka perlu diperhatikan tahapan persiapan material, persiapan mesin, proses las catat, pengisian kawah las dan proses mematikan *Torch*. Setelah pengelasan sambungan dilakukan maka diakhiri dengan pemeriksaan baik secara visual maupun test DT dan NDT.
F. Tes Formatif

1. Gambarkan ilustrasi posisi pengelasan sambungan sudut 1F las TIG/GTAW!
   
   **Jawaban**
   ........................................................................................................................................
   ........................................................................................................................................
   ........................................................................................................................................

2. Jelaskan parameter pengelasan sambungan sudut 1F las TIG/GTAW pada pelat baja lunak dan atau Stainless Steel!
   
   **Jawaban**
   ........................................................................................................................................
   ........................................................................................................................................
   ........................................................................................................................................

3. Gambarkan persiapan tack weld pengelasan sambungan sudut 2F las TIG/GTAW!
   
   **Jawaban**
   ........................................................................................................................................
   ........................................................................................................................................
   ........................................................................................................................................

4. Jelaskan parameter pengelasan sambungan sudut 2F las TIG/GTAW pada pelat Stainless Steel!
   
   **Jawaban**
   ........................................................................................................................................
   ........................................................................................................................................
   ........................................................................................................................................
G. Kunci Jawaban

1. Gambarkan ilustrasi posisi pengelasan sambungan sudut 1F las GTAW!
   **Jawaban**

2. Jelaskan parameter pengelasan sambungan sudut 1F las GTAW pada pelat baja lunak!
   **Jawaban**
   a. Polaritas DC
   b. Tungsten 2% Thorium
   c. Bahan pengisi seri ER-70S-x
   d. Tekanan kerja diantara 8 – 10 CFH
   e. Arus diantara 140 – 170 A

3. Gambarkan persiapan tack weld pengelasan sambungan sudut 2F las GTAW!
   **Jawaban**

4. Jelaskan parameter pengelasan sambungan sudut 2F las GTAW pada pelat Stainless Steel!
   **Jawaban**
   a. Polaritas DC
   b. Tungsten 2% Thorium
   c. Bahan pengisi seri ER-4043
   d. Tekanan kerja 10 CFH
   e. Arus diantara 110 – 140 A
Lembar Kerja KP-08

LK - 00

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pengelasan Sambungan Sudut (Fillet joint) 1F dan 2F TIG/GTAW pada Pelat Baja Lunak dan atau Stainless Steel? Sebutkan!

---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------

3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!

---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------

4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

6. Apa bukti yang harus diunjukkan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!
A. Tujuan Praktikum

Setelah mempelajari dan berlatih membuat sambungan sudut 1F pada pelat baja lunak, peserta diklat diharapkan mampu:

1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada Torch
6. Menyalakan busur las
7. **Mengelas Sambungan Sudut (Fillet joint) 1F TIG/GTAW pada Pelat Baja Lunak**
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan

Menyiapkan mesin las TIG/GTAW dan perlengkapannya
Menyiapkan alat bantu las
Menyiapkan alat pelindung diri
Menyiapkan WPS/Jobsheet/Gambar kerja
Menyiapkan pelat baja lunak ukuran 60 x 120 x 3 mm (1 buah)
Menyiapkan pelat baja lunak ukuran 30 x 120 x 3 mm (2 buah)
Menyiapkan bahan tambah baja lunak Ø 2,4 mm
C. Sikap dan Keselamatan Kerja

Menggunakan elektroda sesuai dengan tebal bahan
Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
Memperhatikan peletakan dan posisi Torch terhadap lingkungan kerja dan benda kerja
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja

D. Proses Kerja

Menyiapkan peralatan las TIG/GTAW/TIG, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja
Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 8 – 10 CfH disesuaikan dengan tebal pelat
Mengatur ampera diantara 140-170 amp
Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja
Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2 mm
Mengatur sudut pembakar diantara 70°-80° terhadap jalur las
Mengatur sudut bahan tambah 10°-20°
Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja
Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan
Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukan “0”
E. Hasil Kerja

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebar jalur las</td>
<td>5 mm, tol +1, -0</td>
</tr>
<tr>
<td>Kelurusan jalur las</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>Pencairan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
<tr>
<td>Tinggi jalur lasan</td>
<td>2 mm, tol +1, -0</td>
</tr>
<tr>
<td>Penetrasi</td>
<td>Maks. Rata dengan permukaan bawah</td>
</tr>
<tr>
<td>Kebersihan</td>
<td>Tidak ada percikan dan terak las yang menempel pada daerah pengelasan</td>
</tr>
</tbody>
</table>

F. Gambar Kerja
G. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta</td>
<td>:</td>
</tr>
<tr>
<td>Kelas</td>
<td>:</td>
</tr>
<tr>
<td>Waktu Praktikum</td>
<td>:</td>
</tr>
</tbody>
</table>

### I. Bahan
1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)
2. .................................................................
3. Dst.

### II. Peralatan
1. (Sebutkan peralatan kerja yang digunakan)
2. .................................................................
3. Dst.

### III. Keselamatan Kerja
1. (Sebutkan peralatan keselamatan kerja yang digunakan)
2. .................................................................
3. Dst.

### IV. Proses Kerja
1. (Uraikan tahapan kerja yang digunakan)
2. .................................................................
3. Dst.

### V. Hasil Kerja
1. (Uraikan hasil kerja yang diinginkan)
2. .................................................................
3. Dst.

### VI. Gambar Kerja
Form LK-02.P Lembar Kerja Pengelasan Sambungan Sudut (*Fillet joint*) 2F
*TIG/GTAW* pada Pelat *Stainless Steel*

**A. Tujuan Praktikum**

Setelah mempelajari dan berlatih membuat sambungan sudut 2F pada pelat *Stainless Steel*, peserta diklat diharapkan mampu:

1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada *Torch*
6. Menyalakan busur las
7. **Mengelas Sambungan Sudut (*Fillet joint*) 2F *TIG/GTAW* pada Pelat *Stainless Steel***
8. Memeriksa hasil las

**B. Persiapan Alat dan Bahan**

- Menyiapkan mesin las *GTAW/TIG* dan perlengkapannya
- Menyiapkan alat bantu las
- Menyiapkan alat pelindung diri
- Menyiapkan WPS/Jobsheet/Gambar kerja
- Menyiapkan pelat *Stainless Steel* ukuran 60 x 120 x 3 mm (1 buah)
- Menyiapkan pelat *Stainless Steel* ukuran 30 x 120 x 3 mm (2 buah)
- Menyiapkan bahan tambah *Stainless Steel* Ø 2,4 mm

**C. Sikap dan Keselamatan Kerja**

- Menggunakan elektroda sesuai dengan tebal bahan
- Memeriksa kebocoran-kebocoran gas sebelum memulai pengelasan
Memperhatikan peletakan dan posisi Torch terhadap lingkungan kerja dan benda kerja
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja

D. Proses Kerja

Menyiapkan peralatan las GTAW/TIG, sambungan slang dan konektor arus listrik yang menghubungkan dengan benda kerja
Memeriksa kembali pemasangan regulator, mengatur tekanan kerja/alir diantara 10 Cfh disesuaikan dengan tebal pelat
Mengatur ampere diantara 110 - 140 amp
Membersihkan permukaan benda kerja yang akan dilas dan menempatkannya sesuai posisi pengelasan/gambar kerja
Menyalakan busur las, mengatur jarak elektroda dengan permukaan benda kerja ± 2mm
Mengatur sudut pembakar diantara 70°-80° terhadap jalur las
Mengatur sudut bahan tambah 15°
Melakukan pengelasan sesuai dengan wps/lembar kerja/gambar kerja
Memeriksa hasil las dengan mengacu kepada kriteria yang ditentukan
Membersihkan semua peralatan yang telah digunakan dan menyimpan kembali pada tempatnya, memposisikan saklar ON/OFF pada posisi OFF, menutup katup gas sampai tekanan menunjukan “0”

E. Hasil Kerja

<table>
<thead>
<tr>
<th>Lebar jalur las</th>
<th>5 mm, tol +1, -0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelurusan jalur</td>
<td>Penyimpangan maks 5%</td>
</tr>
<tr>
<td>Pencairan</td>
<td>Bagian yang tidak mencair maks. 5%</td>
</tr>
</tbody>
</table>
Tinggi jalur lasan 2 mm, tol +1, -0
Penetrasi Maks. Rata dengan permukaan bawah
Kebersihan Tidak ada percikan dan terak las yang menempel pada daerah pengelasan

F. Gambar Kerja
### G. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum :</th>
</tr>
</thead>
</table>

| Nama Peserta : |

| Kelas : |

| Waktu Praktikum : |

#### I. Bahan

1. (Sebutkan bahan praktikum yang digunakan terutama elektroda tungsten)

2. ........................................................................................................................................

3. Dst.

#### II. Peralatan

1. (Sebutkan peralatan kerja yang digunakan)

2. ........................................................................................................................................

3. Dst.

#### III. Keselamatan Kerja

1. (Sebutkan peralatan keselamatan kerja yang digunakan)

2. ........................................................................................................................................

3. Dst.

#### IV. Proses Kerja

1. (Uraikan tahapan kerja yang digunakan)

2. ........................................................................................................................................

3. Dst.

#### V. Hasil Kerja

1. (Uraikan hasil kerja yang diinginkan)

2. ........................................................................................................................................

3. Dst.

#### VI. Gambar Kerja
KEGIATAN PEMBELAJARAN 9 : PEMERIKSAAN HASIL LAS

A. Tujuan

Setelah proses diklat, dengan melihat WPS peserta diklat dapat menentukan inspeksi pengelasan dan pengujian hasil lasan dengan tepat

B. Indikator Pencapaian Kompetensi

20.20.7 Memeriksa hasil pengelasan secara visual dan mekanik
1. Inspeksi pengelasan dapat ditentukan dengan tepat.
2. Pengujian hasil lasan dapat ditentukan dengan tepat.

C. Uraian Materi

Bahan Bacaan 1: Inspeksi Pengelasan

Hasil pengelasan pada umumnya sangat bergantung pada keterampilan welder. Kerusakan hasil las baik di permukaan maupun di bagian dalam sulit dideteksi dengan metode pengujian sederhana. Selain itu karena struktur yang dilas merupakan bagian integral dari seluruh badan material las maka retakan yang timbul akan menyebar luas dengan cepat bahkan mungkin bisa menyebabkan kecelakaan yang serius. Untuk mencegah kecelakaan tersebut pengujian dan pemeriksaan daerah-daerah las sangatlah penting.

Tujuan dilakukannya pengujian adalah untuk menentukan kualitas produk-produk atau spesimen-spesimen tertentu, sedangkan tujuan pemeriksaan adalah untuk menentukan apakah hasil pengujian itu relatif dapat diterima menurut standar-standar kualitas tertentu atau tidak dengan kata lain tujuan pengujian dan pemeriksaan adalah untuk menjamin kualitas dan memberikan kepercayaan terhadap konstruksi yang dilas. Untuk program pengendalian prosedur pengelasan, pengujian dan pemeriksaan dapat diklasifikasikan menjadi tiga kelompok sesuai dengan pengujian dan pemeriksaan dilakukan yaitu sebelum, selama atau setelah pengelasan.
1. Inspeksi Sebelum Pengelasan

Inspeksi dimulai dengan pemeriksaan bahan sebelum fabrikasi "Seams" dan "Laps" atau ketidak sempurnaan permukaan lainnya dapat dideteksi dengan pemeriksaan visual. Laminasi dapat dilihat pada sisi potongan. Dimensi pelat dan pipa dapat ditentukan dengan pengukuran. Setelah bagian - bagian yang akan dilas dirakit, inspektur harus memperhatikan celah akar las yang salah, persiapan sisi-sisi yang akan dilas yang tidak sesuai dan persiapan sambungan lainnya yang akan mempengaruhi mutu dari sambungan las. Inspektur harus mengecek kondisi-kondisi berikut ini untuk pemenuhan spesifikasi yang digunakan:

a. Persiapan pinggiran yang akan dilas (sudut bevel, sudut galur, muka akar) dimensi dan penyelesaiannya

b. Ukuran strip, cincin atau logam pengisi penahan balik

c. Kesetangkupan (alignment) dan penyetelan (fit-up) dari bagian -bagian yang akan dilas.

d. Pembersihan (harus tidak terdapat kotoran-kotoran seperti lemak, minyak, cat dan lain-lain pada sisi yang akan dilas dan sekitarnya)

Inspeksi yang teliti sebelum pengelasan dapat meniadakan atau mengurangi kondisi yang mengakibatkan lasan mengandung diskontinuitas

2. Inspeksi Pada Waktu Pengelasan

Inspeksi visual mengecek rincian pekerjaan pada waktu jalannya pengelasan, rincian pekerjaan pengelasan yang harus dicek adalah:

a. Proses las

b. Logam pengisi

c. Fluks atau gas pelindung

d. Suhu pemanasan awal (preheat) dan suhu antar jalur (interpass)

e. Pembersihan

f. Pemahatan penggerindaan atau penakukan (gouging)

g. Persiapan sambungan untuk pengelasan sisi kebalikannya

h. Pengendalian distorsi
i. Suhu dan waktu perlakuan panas pasca las.


3. Inspeksi Setelah Pengelasan

Inspeksi visual setelah pengelasan adalah berguna untuk verifikasi produk yang selesai:

a. Pemenuhan persyaratan gambar
b. Tampak rakitan las
c. Adanya diskontinuitas struktural
d. Tanda – tanda oleh karena kesalahan penanganan (markah Inspeksi yang terlalu dalam atau pengerindaan vang berlebihan dan sebagainya
Bahan Bacaan 2: Pengujian Hasil Pengelasan

Evaluasi hasil pengelasan dapat dilakukan dengan cara :

1. Pemeriksaan hasil las
   a. Visual test (VT)
      ➢ Radiography Test (RT)
      ➢ Penetrant Test (PT)
      ➢ Ultrasonic Test (UT)
      ➢ Particle Magnetic (MT)
      ➢ Eddy Current
   b. Non Destructive test (NDT)

2. Pengujian hasil lasan
   a. Uji tarik / Tensile test
   b. Uji lengkung / Bending test
   c. Macro etsa
   d. Uji kekerasan / Hardness test
   e. Uji Patah / Fracture test
   f. Uji Pukul Charphy / Impact test

Cacat lasan merupakan salah satu yang diperiksa secara visual dan NDT. Beberapa cacat las yang sering muncul ialah:

a. Overlap

Overlap ialah suatu kondisi hasil las di mana logam las melebihi area las.

| Gambar 9.1 | Cacat overlap (Sumber CWB, 2006:424) |
b. **Excessive**

*Excessive* ialah suatu kondisi hasil las di mana logam las membuat takikan pada las multipass.

<table>
<thead>
<tr>
<th>Gambar 9.2</th>
<th>Cacat excessive (Sumber CWB, 2006:425)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.jpg" alt="Excessive" /></td>
<td><img src="image2.jpg" alt="Excessive" /></td>
</tr>
</tbody>
</table>

---

c. **Underfill**

*Underfill* ialah suatu kondisi hasil las di mana logam las kurang mengisi kampuh.

<table>
<thead>
<tr>
<th>Gambar 9.3</th>
<th>Cacat underfill (Sumber CWB, 2006:427)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.jpg" alt="Underfill" /></td>
<td><img src="image4.jpg" alt="Underfill" /></td>
</tr>
</tbody>
</table>

---

d. **Undercut**

*Undercut* ialah suatu kondisi hasil las di mana logam base/induk cacat pada sisi las (termakan logam las)

<table>
<thead>
<tr>
<th>Gambar 9.4</th>
<th>Cacat undercut (Sumber CWB, 2006:427)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image5.jpg" alt="Undercut" /></td>
<td><img src="image6.jpg" alt="Undercut" /></td>
</tr>
</tbody>
</table>
e. Porosity

Porosity ialah suatu kondisi hasil las di mana di dalam logam las terdapat rongga akibat udara terperangkap.

<table>
<thead>
<tr>
<th>Gambar 9.5</th>
<th>Cacat porosity (Sumber CWB, 2006:434)</th>
</tr>
</thead>
</table>

f. Incomplete fusion

Incomplete fusion ialah suatu kondisi hasil las di mana logam las dengan logam base tidak “fusi” dengan baik.

<table>
<thead>
<tr>
<th>Gambar 9.6</th>
<th>Cacat incomplete fusion (Sumber CWB, 2006:441)</th>
</tr>
</thead>
</table>

g. Cracking

Cracking ialah suatu kondisi hasil las dimana terdapat retakan pada logam las.

<table>
<thead>
<tr>
<th>Gambar 9.7</th>
<th>Cacat cracking (Sumber CWB, 2006:445)</th>
</tr>
</thead>
</table>
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pemeriksaan Hasil Las GTAW ini? Sebutkan!
2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!
3. Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!
6. Apa bukti yang harus diunjuk kerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!


Aktivitas Pembelajaran 1 : Menganalisis Cacat Las (1 JP)

Saudara diminta untuk membaca bahan bacaan 1. Hasil pengamatan dituangkan dalam laporan tertulis (LK-01) Untuk membantu saudara mengisi LK-01, dapat dipandu oleh pertanyaan berikut ini:

1. Sebutkan cacat lasan yang ada pada jalur lasan!
2. Gambarkan ilustrasi cacat lasan tersebut!
3. Jelaskan pula penyebab terjadinya cacat lasan!

Aktivitas Pembelajaran 2 : Pemeriksaan Hasil Las (1 JP)


E. Rangkuman

Tujuan dilakukannya pengujian adalah untuk menentukan kualitas produk-produk atau spesimen-spesimen tertentu, sedangkan tujuan pemeriksaan adalah untuk menentukan apakah hasil pengujian itu relatif dapat diterima menurut standar-standar kualitas tertentu atau tidak dengan kata lain tujuan pengujian dan pemeriksaan adalah untuk menjamin kualitas dan memberikan kepercayaan terhadap konstruksi yang dilas.

Pemeriksaan dilakukan sebelum, pada saat dan setelah proses pengelasan dilakukan. Sedangkan pengujian dilakukan destructive test dan non destructive test. Biasa pemeriksaan dilakukan dengan melihat ada atau tidaknya cacat las. Kemudian dilakukan fotomikro untuk melihat daerah las, HAZ dan logam base. Selanjutnya dilakukan uji tarik.
F. Tes Formatif

1. Jelaskan tiga macam inspeksi pengelasan!
   
   **Jawaban**
   
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………….

2. Jelaskan perbedaan destruktif test dan non destruktif test?
   
   **Jawaban**
   
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………

3. Jelaskan macam-macam cacat lasan!
   
   **Jawaban**
   
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………….

4. Jelaskan cara memeriksa hasil lasan menggunakan cairan penetrant!
   
   **Jawaban**
   
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
   ……………………………………………………………………………………………………………………………………………
G. Kunci Jawaban

1. Jelaskan tiga macam inspeksi pengelasan!

   **Jawaban**
   
   Inspeksi sebelum pengelasan meliputi persiapan pinggiran yang akan dilas, ukuran strip, cincin atau logam pengisi penahan balik, dan kesetangkupan (alignment) dan penyetelan (fit-up) dari bagian-bagian yang akan dilas serta pembersihan.
   
   Inspeksi selama pengelasan meliputi logam pengisi, fluks atau gas pelindung, suhu pemanasan awal (preheat) dan suhu antar jalur (interpass), pembersihan, pemahatan penggerindaan atau penakukan (gouging), persiapan sambungan untuk pengelasan sisi kebalikannya, pengendalian distorsi, suhu dan waktu perlakuan panas pasca las.
   
   Inspeksi setelah pengelasan meliputi pemenuhan persyaratan gambar, tampak rakitan las, adanya diskontinuitas struktural, tanda-tanda bahwa karena kesalahan penanganan.

2. Jelaskan perbedaan destruktif test dan non destruktif test?

   **Jawaban**
   
   Destruktif test merupakan salah satu cara menguji hasil lasan dengan cara merusak benda uji, misalkan dengan uji bending atau pukul takik. Sedangkan non destriktif test teknik pemeriksaan hasil las tanpa merusak benda uji, misalkan penetrant dan ultrasonic.

3. Jelaskan macam-macam cacat lasan!

   **Jawaban**
   
   a. Overlap; b) Excessive; c) Undercut, d) Underfill, e) Porosity, f) Incomplete fusion, g) Cracking
4. Jelaskan cara memeriksa hasil lasan menggunakan cairan penetrant!

**Jawaban**

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Bersihkan jalur las benda uji dari kotoran berupa karat dengan sikat baja dan kertas ampelas</td>
</tr>
<tr>
<td>b</td>
<td>Aplikasikan <em>cleaner/remover</em> pada jalur las benda uji</td>
</tr>
<tr>
<td>c</td>
<td>Bersihkan jalur las dengan lap bersih</td>
</tr>
<tr>
<td>d</td>
<td>Aplikasikan <em>penetrant</em> pada jalur las benda uji, diamkan dengan lamanya (<em>dwell time</em>) sesuai bahan biasanya antara 7-10 menit.</td>
</tr>
<tr>
<td>e</td>
<td>Bersihkan cairan penetrant dari jalur las menggunakan lap, jika perlu semprotkan <em>cleaner/remover</em> pada kain lap kemudian bersihkan kembali jalur las sehingga cairan jalur las bersih dari cairan penetrant</td>
</tr>
<tr>
<td>f</td>
<td>Aplikasikan developer pada jalur las, biarkan sampai cairan <em>penetrant</em> yang berada dalam celah crack timbul ke permukaan</td>
</tr>
<tr>
<td>g</td>
<td>Amati jalur las, perhatikan spot-psot berwarna sesuai dengan warna penetrant. Foto untuk dianalisis.</td>
</tr>
</tbody>
</table>
## Lembar Kerja KP-09

### LK - 00

1. **Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran Pemeriksaan Hasil Las GTAW? Sebutkan!**

   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………

2. **Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!**

   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………

3. **Ada berapa dokumen bahan bacaan yang ada di dalam materi pembelajaran ini? Sebutkan!**

   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………

4. **Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!**

   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
   …………………………………………………………………………………………………………………………………………
5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!

.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
.................................................................................................................................................................
Form LK-01.P Pemeriksaan Hasil Las Menggunakan Cairan Penetrant

A. Tujuan Praktikum

Setelah mempelajari dan berlatih membuat rigi las dengan bahan tambah pada pelat baja lunak, peserta diklat diharapkan mampu:
1. Menggunakan peralatan dan perlengkapan keselamatan dan kesehatan kerja
2. Mengatur tekanan kerja pengelasan dengan gas argon pada regulator
3. Mengatur aliran gas argon
4. Menajamkan elektroda
5. Memasang dan mengatur jarak elektroda pada torch
6. Menyalakan busur las
7. Melakukan pengelasan pada pelat baja lunak dengan proses GTAW
8. Memeriksa hasil las

B. Persiapan Alat dan Bahan

Menyiapkan penetrant satu set, terdiri dari cleaner/remover, penetrant dan developer.
Menyiapkan lap bersih
Menyiapkan sikat baja dan kertas ampelas
Menyiapkan benda uji
Menyiapkan WPS/Jobsheet/Gambar kerja

C. Sikap dan Keselamatan Kerja

Menggunakan penetrant sesuai SOP
Bekerja dengan bersih dan rapi
Menjauhkan benda-benda yang mudah terbakar dan berpotensi menimbulkan berbahaya dari lokasi kerja
Membersihkan alat dan tempat kerja setelah selesai bekerja
D. Proses Kerja

Bersihkan jalur las benda uji dari kotoran berupa karat dengan sikat baja dan kertas ampelas
Aplikasikan cleaner/remover pada jalur las benda uji
Bersihkan jalur las dengan lap bersih
Aplikasikan penetrant pada jalur las benda uji, diamkan dengan lamanya (dwell time) sesuai bahan biasanya antara 7-10 menit.
Bersihkan cairan penetrant dari jalur las menggunakan lap, jika perlu semprotkan cleaner/remover pada kain lap kemudian bersihkan kembali jalur las sehingga cairan jalur las bersih dari cairan penetrant
Aplikasikan developer pada jalur las, biarkan sampai cairan penetrant yang berada dalam celah crack timbul ke permukaan
Amati jalur las, perhatikan spot-psot berwarna sesuai dengan warna penetrant. Foto untuk dianalisis.
Praktikum selesai, bersihkan benda uji menggunakan remover dan kain lap
Bersihkan dan letakan kembali peralatan praktikum pada tempatnya semula

E. Hasil Kerja

Benda uji yang sudah teridentifikasi lokasi dan jumlah cacat crack nya misalkan seperti gambar di bawah ini

(Sumber: www.premierndtservices.com)
F. Gambar Kerja

1. Semprotkan Cleaner
2. Bersihkan Cleaner
3. Semprotkan penetran, diamkan 7-10 menit
4. Bersihkan Penetran
5. Semprotkan Developer
6. Penetran terangkat
G. Form Laporan Praktikum

<table>
<thead>
<tr>
<th>Judul Praktikum</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Peserta</td>
<td>:</td>
</tr>
<tr>
<td>Kelas</td>
<td>:</td>
</tr>
<tr>
<td>Waktu Praktikum</td>
<td>:</td>
</tr>
</tbody>
</table>

I. Bahan

<table>
<thead>
<tr>
<th>1.</th>
<th>(Sebutkan bahan praktikum yang digunakan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>.................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

II. Peralatan

<table>
<thead>
<tr>
<th>1.</th>
<th>(Sebutkan peralatan kerja yang digunakan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>.................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

III. Keselamatan Kerja

<table>
<thead>
<tr>
<th>1.</th>
<th>(Sebutkan peralatan keselamatan kerja yang digunakan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>........................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

IV. Proses Kerja
<table>
<thead>
<tr>
<th></th>
<th>(Uraikan tahapan kerja yang digunakan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>.................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

V Hasil Kerja

<table>
<thead>
<tr>
<th></th>
<th>(Uraikan hasil kerja yang diinginkan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>.................................................................</td>
</tr>
<tr>
<td>3.</td>
<td>Dst.</td>
</tr>
</tbody>
</table>

VI Gambar Kerja
BAB III
PENUTUP

Modul Diklat PKB yang disusun ini disiapkan dalam rangka membantu guru dan tenaga kependidikan paket keahlian Teknik Fabrikasi Logam dalam menguasai kompetensi professional dalam mengelas dengan menggunakan las TIG (Tungsten Inert Gas) atau GTAW (Gas Tungsten Arc Welding). Melalui paparan materi yang ada dalam modul ini, diharapkan para guru dan tenaga kependidikan dapat menemukan kemudahan dalam mempelajari materi dan melaksanakan proses pengelasan dengan menggunakan Proses Las TIG (Tungsten Inert Gas) atau GTAW (Gas Tungsten Arc Welding), khususnya untuk pengelasan pelat baja karbon lunak pada posisi 1F/1G, dan 2F/2G.

Modul ini hanya merupakan “Guidance” bagi guru dan tenaga kependidikan dalam mempelajari materi pengelasan TIG/GTAW. Oleh karena itu, sajian materi yang dipaparkan hanya berupa garis besar dan tidak rinci. Untuk lebih menambah khasanah berfikir, dalam modul ini disiapkan jenis-jenis aktivitas pembelajaran yang dirancang agar guru dapat lebih aktif lagi mencari materi dari berbagai sumber belajar yang ada, baik dalam daftar pustaka, maupun di luar.
DAFTAR PUSTAKA


Sunaryo, H. et. al. (2009). Pengelasan dengan Proses Las GTAW. Jakarta: DitJenLatTas Disnakertrans.


PENGELASAN PELAT MENGGUNAKAN PROSES LAS TIG
(TUNGSTEN INERT GAS)
TEKNIK MESIN – FABRIKASI LOGAM
### GLOSARIUM

| **GTAW (Gas Tungsten Arc Welding)/TIG (Tungsten Inert Gas)** | : Proses pengelasan busur listrik yang menggunakan elektroda tungsten dan gas pelindung yang *Inert*, biasanya Argon atau Helium. |
| **Demam Logam** | : Suatu penyakit dalam tubuh manusia yang diakibatkan oleh pengaruh asap pengelasan yang mengandung partikel logam murni. |
| **WIG (Wolfram Inert Gas)** | : Istilah lain untuk GTAW/TIG yang digunakan di negara Jerman. |
| **HAZ (Heat Area Zone)** | : Area panas dalam logam. |
| **Inert** | : Sifat dari gas pelindung yang secara kimiawi tidak aktif bereaksi. |
| **Torch** | : Istilah lain dari welding Gun, yaitu pembakar. |
| **Tungsten** | : Jenis elektroda las yang digunakan pada saat melakukan proses pengelasan dengan menggunakan las TIG/GTAW. |
| **DCRP (direct-current reverse Polarity)** atau **DCEP (Direct Current Electrode Polarity)** | : Pengkutuban Terbalik Arus Searah, yaitu penyambungan elektroda dengan kutub negative mesin las, dan benda kerja dengan kutub positif mesin las. |
| **DCEN (Direct Current Electrode Negative)** atau **DCSP (Direct Current Straight Polarity)** | : Pengkutuban langsung Arus Searah, yaitu penyambungan elektroda dengan kutub positif mesin las, dan benda kerja dengan kutub negatif mesin las. |