MODUL GURU PEMBELAJAR

Paket Keahlian
Teknik Pengolahan Minyak dan Gas

Pedagogik: Pengembangan Strategi Pembelajaran Profesional: Peralatan Sensor dan Pengoperasian DCS pada Pengolahan Migas

KELOMPOK KOMPETENSI
Paket Keahlian
Teknik Pengolahan Minyak dan Gas

Penyusun :
Nurul Arifin, M.Sc
SMKN 3 Mandau
nurularipin776
085265959270

Reviewer :
Novia Rita, ST., MT
T. Minyak UIR Riau
nova_rita02@yahoo.com
No. HP
KATA PENGANTAR

Pedoman Penyusunan Modul Diklat Pengembangan Keprofesian Berkelanjutan Bagi Guru dan Tenaga Kependidikan merupakan petunjuk bagi penyelenggara pelatihan di dalam melaksanakan pengembangan modul. Pedoman ini disajikan untuk memberikan informasi tentang penyusunan modul sebagai salah satu bentuk bahan dalam kegiatan pengembangan keprofesian berkelanjutan bagi guru dan tenaga kependidikan.

Pada kesempatan ini disampaikan ucapan terima kasih dan penghargaan kepada berbagai pihak yang telah memberikan kontribusi secara maksimal dalam mewujudkan pedoman ini, mudah-mudahan pedoman ini dapat menjadi acuan dan sumber informasi bagi penyusun modul, pelaksanaan penyusunan modul, dan semua pihak yang terlibat dalam penyusunan modul diklat GP.

Jakarta, Agustus 2015
Direktur Jenderal Guru dan Tenaga Kependidikan,

Sumarna Surapranata, Ph.D,
NIP 19590801 198503 1002
DAFTAR ISI

KATA PENGANTAR .. i
DAFTAR ISI .. ii
DAFTAR GAMBAR .. iv
DAFTAR TABEL .. v
BAB I .. 1
PENDAHULUAN ... 1
A. Latar Belakang ... 1
B. Tujuan ... 2
C. Peta Kompetensi .. 2
D. Ruang Lingkup .. 3
E. Saran Cara Penggunaan Modul .. 3
BAB II .. 5
KOMPETENSI PEDAGOGIK .. 5
A. Tujuan ... 5
B. Indikator Pencapaian Kompetensi .. 5
C. Uraian Materi ... 5
D. Aktivitas Pembelajaran ... 41
E. Latihan/Kasus/Tugas .. 42
F. Rangkuman .. 42
G. Umpan Balik dan Tindak Lanjut .. 43
H. Kunci Jawaban .. 43
I. Evaluasi ... 45
BAB III .. 56
KOMPETENSI PROFESIONAL .. 56
A. Tujuan ... 56
B. Indikator Pencapaian Kompetensi .. 56
C. Uraian Materi ... 57
D. Aktivitas Pembelajaran ... 83
E. Latihan/Kasus/Tugas ... 94
F. Rangkuman ... 94
G. Umpan Balik dan Tindak Lanjut .. 97
H. Kunci Jawaban .. 97
I. Evaluasi .. 101
BAB IV ... 104
PENUTUP .. 104
DAFTAR PUSTAKA ... 105
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Typical Rangkaian Thermocouple</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Grafik Tegangan Beberapa Kombinasi Logam Konduktor</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Typical Sambungan Thermocouple</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Konstruksi thermocouple</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Prinsip kerja thermocouple</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Sistem Kontrol Distributed Control System (DCS)</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Distributed Control System</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Prinsip operasi dari model magnetic flowmeter</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>Prinsip Operasi Turbine Meters</td>
<td>74</td>
</tr>
<tr>
<td>3.10</td>
<td>Komponen – komponen Turbine Meters</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>Turbine flowmeters</td>
<td>75</td>
</tr>
<tr>
<td>3.12</td>
<td>Monogram untuk menentukan kerugian tekanan dalam saluran udara mampat.</td>
<td>82</td>
</tr>
<tr>
<td>3.13</td>
<td>Koefisien hambatan (koefisien kerugian gesekan) (\lambda) sebagai fungsi angka Reynolds (R_e)</td>
<td>83</td>
</tr>
<tr>
<td>Tabel</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>3.1</td>
<td>Koefisien kemampumampatan udara</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Faktor monogram untuk menentukan kerugian tekanan dalam saluran udara mampat</td>
<td>82</td>
</tr>
</tbody>
</table>
BAB I
PENDAHULUAN

A. Latar Belakang

Desain modul ini dirancang untuk memperkuat kompetensi guru dari sisi pengetahuan, ketrampilan serta sikap secara utuh. Dimana proses pencapaianannya melalui pembelajaran pada sejumlah mata pelajaran yang dirangkai sebagai satu kesatuan yang saling mendukung dalam mencapai kompetensi tersebut. Modul yang berjudul “Modul Diklat Pasca UKG Paket Teknik Pengolahan Minyak, Gas dan Petrokimia Grade-2” merupakan sejumlah kompetensi yang diperlukan untuk guru SMK pada program keahlian Perminyakan yang diberikan pada Jenjang Dasar-2 dengan perolehan nilai 11-20 pasca Uji Kompetensi Guru (UKG). Modul ini merupakan usaha minimal yang harus dilakukan oleh guru untuk mencapai sejumlah kompetensi yang diharapkan dalam kompetensi inti dan kompetensi dasar sesuai dengan pendekatan ilmiah (scientific approach) yang dipergunakan dalam kurikulum 2013. Langkah-langkah pendekatan ilmiah dalam proses pembelajarnannya dimulai dari menggali informasi melalui pengamatan, pertanyaan dan percobaan, kemudian mengolah data dan informasi, menyajikan data atau informasi dan dilanjutkan dengan menganalisis, menalar dan kemudian menyimpulkan serta terakhir diharapkan dapat mencipta. Setiap guru diharapkan untuk memperkaya dan mengkreasi mata pelajaran dalam bentuk kegiatan-kegiatan lain yang sesuai dan relevan, serta bersumber dari alam sekitar kita.
Modul ini dilengkapi dengan materi yang tercakup dalam kompetensi Pedagogik dan kompetensi professional. Materi Kompetensi pedagogik pada modul ini membahas tentang Pengembangan Strategi Pembelajaran, Sedangkan kompetensi profesional membahas tentang macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur dan pengoperasian DCS sesuai SOP.

B. Tujuan
1. Peserta Diklat dapat menerapkan pendekatan pembelajaran saintifik, Model Pembelajaran serta Metode dan Teknik Pembelajaran, melalui ceramah, diskusi kelompok, brainstorming, dan penugasan mandiri, sesuai dengan tuntutan paket keahlian Teknik Perminyakan.
2. Peserta Diklat dapat mengevaluasi macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur.
3. Peserta Diklat dapat mengoperasikan DCS sesuai standar operasional prosedur.

C. Peta Kompetensi

<table>
<thead>
<tr>
<th>Kompetensi Utama</th>
<th>Kompetensi Inti</th>
<th>Kompetensi Guru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogik</td>
<td>2. Menguasai teori belajar dan prinsip-prinsip pembelajaran yang mendidik.</td>
<td>2.2. Menerapkan berbagai pendekatan, strategi, metode, dan teknik pembelajaran menndidik kreatif dalam mata pelajaran yang diampu</td>
</tr>
<tr>
<td>Profesional</td>
<td>20. Menguasai materi, struktur, konsep dan pola pikir keilmuan</td>
<td>20.23. Mengevaluasi macam – macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur</td>
</tr>
</tbody>
</table>
yang mendukung mata pelajaran yang diampu

<table>
<thead>
<tr>
<th>yant</th>
<th>mendukung mata pelajaran yang diampu</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.24.</td>
<td>Mencoba pengoperasian DCS sesuai SOP</td>
</tr>
</tbody>
</table>

D. Ruang Lingkup

Ada pun ruang lingkup dari modul ini meliputi:

1. Pendekatan Pembelajaran Saintifik
2. Model Pembelajaran
3. Metode dan Teknik Pembelajaran.
4. Mengamati macam-macam peralatan sensor yang digunakan (Thermocouple, Depiser, Tube bordon, Displasher, floater), Mengidentifikasi tentang macam-macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur dan Menentukan hubungan macam-macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur.
5. Menentukan macam-macam turbin flow meter (Mechanical turbin flow meter dan Electric turbin flow meter) dan Melaksanakan perhitungan rugi tekanan (pressure drop) kecil

E. Saran Cara Penggunaan Modul

Langkah pembelajaran dalam modul ini dibagi dalam dua aktivitas, yakni aktivitas kelas dan individual. Aktivitas kelas dilaksanakan dalam bentuk kegiatan ceramah, diskusi dan curah pendapat dalam bentuk klasikal learning. Aktivitas individual meliputi, membaca modul, melakukan latihan dan membuat rangkuman dan melakukan evaluasi individual.

Dengan mengikuti langkah pembelajaran yang telah ditentukan ini, diharapkan peserta Diklat dapat meningkatkan kompetensinya, yang pada akhirnya meningkatkan kualitas pembelajaran di kelas, sehingga dapat meningkatkan kualitas hasil belajar peserta didik di sekolah.

Di dalam modul ini anda akan menemukan bagian-bagian sebagai berikut:

1. Pendahuluan
Anda menemukan informasi tentang latar belakang, tujuan, Peta Kompetensi, ruang lingkup modul, dan saran penggunaan modul.

2. Uraian Materi
 Pada bagian ini anda mempelajari materi pelajaran yang harus anda kuasai

3. Ativitas Pembelajaran
 Anda menemukan berbagai bentuk kegiatan belajar yang harus dilakukan untuk memantapkan pengetahuan, keterampilan, serta nilai dan sikap yang terkait dengan uraian materi.

4. Latihan/Kasus/Tugas
 Pada bagian ini anda mengerjakan soal-soal atau melaksanakan tugas untuk mengukur kemampuan anda terhadap topik pelajaran yang telah anda pelajari.

5. Ringkasan
 Anda menemukan inti sari dari uraian materi kegiatan pembelajaran yang disajikan diakhiri kegiatan pembelajaran.

6. Umpan Balik/Tindak Lanjut
 Pada bagian ini anda akan menulis pernyataan deskriptif tentang hal-hal yang telah dipelajari/ditemukan selama pembelajaran, rencana pengembangan dan implementasinya, input terhadap pemelajaran berikutnya.

7. Evaluasi
 Anda menemukan seperangkat tes yang diberikan untuk mengukur penguasaan terhadap materi yang dipelajari.

8. Kunci jawaban Latihan/Kasus/Tugas
 Anda menemukan kunci jawaban dari latihan-latihan yang anda kerjakan.
BAB II
KOMPETENSI PEDAGOGIK
PENGEMBANGAN STRATEGI PEMBELAJARAN

KEGIATAN PEMBELAJARAN 1 : PENDEKATAN PEMBELAJARAN SAINTIFIK.

A. Tujuan Pembelajaran
Setelah mengikuti sesi ini, peserta diklat dapat menerapkan pendekatan pembelajaran saintifik yang tepat, sesuai dengan tuntutan paket keahlian teknik pengolahan minyak, gas, dan petrokimia melalui ceramah, diskusi kelompok, brainstorming, dan penugasan mandiri.

B. Indikator Pencapaian Kompetensi
Pendekatan pebelajaran saintifik diterapkan sesuai dengan karakteristik materi yang akan diajarkan.

C. Uraian materi
1. Pengertian Pendekatan Saintifik

Untuk dapat disebut ilmiah, metode pencarian (method of inquiry) harus berbasis pada bukti-bukti dari objek yang dapat diobservasi, empiris, dan terukur dengan prinsip-prinsip penalaran yang spesifik. Metode ilmiah pada umumnya memuat serangkaian aktivitas pengumpulan data melalui observasi atau ekperimen, mengolah informasi atau data, menganalisis, kemudian memformulasi, dan menguji.

Model ini juga tercakup penemuan makna (meanings), organisasi, dan struktur dari ide atau gagasan, sehingga secara bertahap siswa belajar bagaimana mengorganisasikan dan melakukan penelitian. Pembelajaran berbasis keterampilan proses sains menekankan pada kemampuan peserta didik dalam menemukan sendiri (discover) pengetahuan yang didasarkan atas pengalaman belajar, hukum-hukum, prinsip-prinsip dan generalisasi, sehingga lebih memberikan kesempatan bagi berkembangnya keterampilan berpikir tingkat tinggi (Houston, 1988). Dengan demikian peserta didik lebih diberdayakan sebagai subjek belajar yang harus berperan aktif dalam memburu informasi dari berbagai sumber belajar, dan guru lebih berperan sebagai organisator dan fasilitator pembelajaran.

Model pembelajaran berbasis keterampilan proses sains berpotensi membangun kompetensi dasar hidup siswa melalui pengembangan
keterampilan proses sains, sikap ilmiah, dan proses konstruksi pengetahuan secara bertahap. Keterampilan proses sains pada hakikatnya adalah kemampuan dasar untuk belajar (basic learning tools) yaitu kemampuan yang berfungsi untuk membentuk landasan pada setiap individu dalam mengembangkan diri (Chain and Evans: 1990).

Pada hasilnya akan ada peningkatan dan keseimbangan antara kemampuan untuk menjadi manusia yang baik (soft skills) dan manusia yang memiliki kecakapan dan pengetahuan untuk hidup secara layak (hard skills) dari anak didik yang meliputi aspek kompetensi sikap, keterampilan dan pengetahuan. Hal ini menjadi ciri khas dan kekuatan tersendiri dari keberadaan Kurikulum 2013 yang banyak mendapat pertanyaan dari berbagai pihak. Kompetensi sikap diperoleh melalui aktivitas menerima, menyalurkan dan menghargai, menghayati, dan mengamalkan. Keterampilan diperoleh melalui aktivitas mengamati, menanya, mencoba, menalar, menyajikan, dan mencipta. Sedangkan pengetahuan diperoleh melalui aktivitas mengingat, memahami, menerapkan, menganalisis, mengevaluasi, dan mencipta.

Metode ilmiah umumnya memuat rangkaian kegiatan koleksi data atau fakta melalui observasi dan eksperimen, kemudian memformulasi dan menguji hipotesis. Sebenarnya apa yang kita bicarakan dengan metode ilmiah
merujuk pada: (1) adanya fakta, (2) sifat bebas prasangka, (3) sifat objektif, dan (4) adanya analisa. Selanjutnya secara sederhana pendekatan ilmiah merupakan suatu cara atau mekanisme untuk mendapatkan pengetahuan dengan prosedur yang didasarkan pada suatu metode ilmiah. Ada juga yang mengartikan pendekatan ilmiah sebagai mekanisme untuk memperoleh pengetahuan yang didasarkan pada struktur logis.

2. Langkah-Langkah Pembelajaran dengan Pendekatan Saintifik

Berikut ini adalah aplikatif dari pendekatan saintifik.

Menanya. Setelah anak didik mengamati, guru memberikan kesempatan kepada anak didik untuk bertanya. Tahap kedua adalah menanya perlu dipahami yang bertanya disini bukanlah guru melainkan anak didik. Guru harus benar-benar membuka kesempatan kepada semua anak didik untuk bertanya. Dalam hal ini adalah melatih keaktifan anak didik. Selain itu juga untuk menggetahui sejauh mana pengetahuan dan rasa ingin tahu dari anak didik. Guru yang dianggap berhasil dalam pembelajaran adalah guru yang...
mampu membuat anak didik yang awalnya tidak tertarik terhadap materi kemudian menjadi tertarik dan kemudian menyenangi pelajaran tersebut.

Menalar. Istilah “menalar” dalam kerangka proses pembelajaran dengan pendekatan ilmiah yang dianut dalam Kurikulum 2013 untuk menggambarkan bahwa guru dan anak didik merupakan pelaku aktif. Titik tekannya tentu dalam banyak hal dan situasi anak didik harus lebih aktif daripada guru. Penalaran adalah proses berpikir yang logis dan sistematis atas fakta-fakta empiris yang dapat diobservasi untuk memperoleh simpulan berupa pengetahuan. Penalaran dimaksud merupakan penalaran ilmiah, meski penalaran nonilmiah tidak selalu tidak bermanfaat.

Mencoba/mengeksplorasi. Eksplorasi adalah upaya awal membangun pengetahuan melalui peningkatan pemahaman atas suatu fenomena. Strategi yang digunakan adalah memperluas dan memperdalam pengetahuan yang menerapkan strategi belajar aktif. Pendekatan pembelajaran yang berkembang saat ini secara empirik telah melahirkan disiplin baru pada proses belajar. Tidak hanya berfokus pada apa yang dapat anak didik temukan, namun sampai pada bagaimana cara mengeksplorasi ilmu pengetahuan. Istilah yang populer untuk menggambarkan kegiatan ini adalah “explorative learning”.

Jejaring Pembelajaran atau Pembelajaran Kolaboratif. Pembelajaran kolaboratif merupakan suatu filsafat personal, lebih dari sekadar teknik pembelajaran di kelas-kelas sekolah. Kolaborasi esensinya merupakan filsafat interaksi dan gaya hidup manusia yang menempatkan dan memaknai kerjasama sebagai struktur interaksi yang dirancang secara baik dan disengaja untuk memudahkan usaha kolektif dalam rangka mencapai tujuan bersama.

Tantangan baru dinamika kehidupan yang makin kompleks menuntut aktivitas pembelajaran bukan sekedar mengulang fakta dan fenomena keseharian yang dapat diduga melainkan mampu menjangkau pada situasi baru yang tak terduga. Dengan dukungan kemajuan teknologi dan seni,
pembelajaran diharapkan mendorong kemampuan berpikir anak didik hingga situasi baru yang tak terduga.

Penguatan pendekatan saintifik dalam pembelajaran perlu menerapkan pembelajaran berbasis penyingkapan/penelitian (discovery/inquiry learning). Untuk mendorong kemampuan anak didik menghasilkan karya kontekstual, baik individual maupun kelompok maka sangat disarankan menggunakan pendekatan pembelajaran yang menghasilkan karya berbasis pemecahan masalah (project based learning). Selain itu juga bisa menggunakan pembelajaran kolaboratif kelas misalnya STAD, Jigsaw, Group Investigation dsb. Pembelajaran saintifik tidak hanya memandang hasil belajar sebagai muara akhir, namum proses pembelajaran dipandang sangat penting. Oleh karena itu pembelajaran saintifik menekankan pada keterampilan proses.

D. Aktivitas Pembelajaran

➢ Tugas Kelompok
 Bermain Peran (Role Playing)
 Topik : Penerapan pendekatan saintifik Dalam proses pebelajaran
 Petunjuk :
 1. Bentuk kelompok dengan 5 anggota.
2. Buatlah skenario bermain peran sesuai dengan peran masing-masing dalam bentuk deskripsi singkat.
 - Guru
 - Siswa 1
 - Siswa 2
 - Siswa 3
 - Siswa 4

3. Jawablah pertanyaan berikut:
 a. Apa penilaian guru terhadap proses pendekatan saintifik?
 b. Adakah kelemahannya?
 c. Bagaimana solusinya?
 d. Apa manfaat pendekatan saintifik pada siswa dan guru?

E. Latihan/Kasus/Tugas
 Berdasarkan bacaan di atas, jawablah pertanyaan berikut!
 1. Bagaimanakah pemahaman Anda tentang pendekatan saintifik?
 2. Jelaskan aplikatif dari pendekatan saintifik!
 3. Bacalah Permendikbud nomor 103 tahun 2014, buatlah rangkuman tentang pendekatan saintifik yang dimaksud pada permendikbud tersebut!

F. Rangkuman
 Agar pembelajaran terus menerus membangkitkan kreativitas dan keingintahuan anak didik, kegiatan pembelajaran kompetensi dilakukan dengan langkah sebagai berikut:
G. Umpan Balik dan Tindak Lanjut

Mohon untuk mengisi pertanyaan ini berdasarkan materi yang sudah Anda pelajari, pada selembar kertas.

Nama :
Tanggal :

➢ Apa saja yang sudah saya lakukan berkaitan dengan materi ini?
➢ Bagaimanakah pikiran/perasaan saya tentang materi kegiatan belajar ini?

H. Evaluasi

1. Perendikbud nomor 103 tahun 2014, mengamatkan bahwa esensi dari proses pembelajaran adalah
 a. Model pembelajaran berbasis masalah
 b. Pendekatan saintifik
 c. Model pembelajaran berbasis proyek
 d. Model pembelajaran discovery

2. Penalaran melihat fenomena umum kemudian menarik kesimpulan yang spesifik, di sebut juga ...
 a. Deduktif
 b. Induktif
 c. Logika
 d. Intuasi

3. Pembelajaran yang mengadopsi langkah-langkah sains dalam membangun pengetahuan melalui metode ilmiah disebut …
 a. Pembelajaran tescher center
 b. Pembelajaran student center
 c. Pembelajaran inquiry
 d. Pendekatan saintifik.

4. Pendekatan saintifik menekankan pada …
 a. Keterampilan proses.
b. Output
c. Outcome
d. input

5. Penguatan pendekatan sajantifik dalam pembelajaran dapat dilihat pada model pembelajaran berbasis …
 a. masalah
 b. projek
 c. Penemuan
 d. a,b. dan c benar

I. Kunci Jawaban
 1. B
 2. A
 3. D
 4. A
 5. D

KEGIATAN PEMBELAJARAN 2 : MODEL PEMBELAJARAN DENGAN PENDEKATAN SAINTIFIK

A. Tujuan Pembelajaran
 Setelah mengikuti kegiatan belajar ini, peserta diklat dapat menerapkan model pembelajaran sajantifik (Problem Based Learning, Projek Based Learning, Discovery learning, dan Inquiry Learning), sesuai dengan tuntutan paket keahlian teknik pengolahan minyak, gas, dan petrokimia melalui ceramah, diskusi kelompok, brainstorming, dan penugasan mandiri.

B. Indikator Pencapaian Kompetensi
 Berbagai strategi/model Pembelajaran (Problem Based Learning, Projek Based Learning, Discovery learning, dan Inquiry Learning) diberikan dengan tepat.

C. Uraian materi
 14
1. Model Pembelajaran Problem Based Learning

Pemecahan masalah adalah suatu proses menemukan suatu respon yang tepat terhadap suatu situasi yang benar-benar unik dan baru bagi si pemecah masalah. Dalam pengembangan pembelajaran ini, pemecahan masalah didefinisikan sebagai proses atau upaya untuk mendapatkan suatu penyelesain tugas atau situasi yang benar-benar sebagai masalah dengan menggunakan aturan-aturan yang sudah diketahui.

Pembelajaran berbasis masalah dapat diartikan sebagai rangkaian aktivitas pembelajaran yang menekankan kepada proses penyelesaian masalah yang dihadapi secara ilmiah. Terdapat tiga ciri utama dari pembelajaran berbasis masalah:

- Pembelajaran berbasis masalah merupakan aktivitas pembelajaran, artinya dalam implementasinya ada sejumlah kegiatan yang harus dilakukan siswa. Model ini tidak mengharapkan siswa hanya sekedar mendengarkan, mencatat, kemudian menghafal materi pelajaran, akan tetapi melalui pembelajaran berbasis masalah siswa aktif berpikir, berkomunikasi, mencari dan mengolah data, dan akhirnya menyimpulkan.
- Aktivitas pembelajaran diarahkan untuk menyelesaikan masalah. Model ini menempatkan masalah sebagai kata kunci dari proses pembelajaran.
- Pemecahan masalah dilakukan dengan menggunakan pendekatan berpikir secara ilmiah dengan menggunakan proses berpikir deduktif dan inductif. Proses berpikir ini dilakukan secara sistematis dan empiris. Sistematis artinya berpikir ilmiah melalui tahapan-tahapan tertentu, sedangkan empiris artinya proses penyelesaian masalah didasarkan pada data dan fakta yang jelas.
- **Teori Pembelajaran Berbasis Masalah**

Beberapa Dukungan Teori Tentang Pembelajaran Berbasis Masalah

Sebagai suatu model pembelajaran, maka pembelajaran berbasis masalah didasarkan oleh landasan yang kuat oleh berbagai ahli.

 Pandangan Dewey tentang pendidikan melihat sekolah sebagai pencerminan masyarakat yang lebih besar dan kelas menjadi laboratorium untuk penyelidikan dan pengentasan masalah kehidupan nyata.

2. Piaget, Vygotsky dan Konstruktivisme

 Pembelajaran berbasis masalah meminjam pendapat Piaget bahwa apabila pelajar dilibatkan dalam proses mendapat informasi dan mengkonstruksi pengetahuannya sendiri, maka pembelajaran akan menjadi bermakna. Sementara Vygostky yakin bahwa intelektual berkembang ketika individu menghadapi pengalaman baru dan membingungkan dan ketika mereka berusaha mengatasi deskripsi yang timbul oleh pengalaman-pengalaman ini. Menurut Vygotsky siswa memiliki dua tingkat perkembangan berbeda yaitu:

 - Tingkat perkembangan actual, yang menentukan fungsi intelektual individu saat ini dan kemampuannya untuk mempelajari sendiri hal-hal tertentu.
 - Tingkat perkembangan potensial yaitu yang dapat difungsikan atau dicapai oleh individu dengan bantuan orang lain, misalnya guru, orang tua atau bahkan teman sebaya yang lebih cerdas, maju dan berkembang.

3. Bruner

 Bruner berpendapat bahwa pada hakekatnya tujuan pembelajaran bukan hanya memperbesar dasar pengetahuan siswa, tetapi juga untuk menciptakan berbagai kemungkinan untuk *invention* (penciptaan) dan *discovery* (penemuan). Bruner menganggap sangat penting peran dialog dan interaksi social dalam proses pembelajaran. Berdasarkan dari konsep Bruner, maka seorang guru yang akan menggunakan pendekatan berbasis masalah harus menekankan pada beberapa hal berikut ini dalam proses pembelajarannya:

 - Memberikan tekanan yang kuat untuk membangun keterlibatan aktif semua siswa dalam setiap langkah dan proses pembelajaran yang dilakukan.
 - Mendorong siswa untuk mengkonstruksi pengetahuan oleh siswa sendiri tanpa dominasi oleh guru.
- Guru memberikan pertanyaan-pertanyaan kepada siswa untuk di dalam berbagai kegiatan penyelidikan hingga siswa sampai pada penemuan ide-ide dan mengkonstruksinya menjadi bangunan teori, paling tidak sampai pada pemahamannya yang mendalam tentang teori.

- Orientasi yang digunakan adalah induktif bukan orientasi deduktif.

Strategi pembelajaran dengan pemecahan masalah dapat diterapkan apabila guru memiliki beberapa pertimbangan sebagai berikut:

1. Guru menginginkan agar siswa dapat mengingat materi pelajaran, menguasai bahan dan memahami secara penuh permasalahan yang akan dipelajari.

2. Guru menginginkan untuk mengembangkan keterampilan berfikir siswa, yaitu kemampuan menganalisis situasi, menerapkan pengetahuan yang mereka miliki dalam situasi baru, mengenal adanya perbedaan antara fakta dan pendapat, serta mengembangkan kemampuan dalam membuat judgment secara objektif.

3. Guru menginginkan kemampuan siswa untuk memecahkan masalah serta membuat tantangan intelektual siswa.

4. Guru memotivasi siswa untuk lebih bertanggung jawab dalam belajarnya.

5. Guru menginginkan agar siswa memahami hubungan antara apa yang dipelajari dengan kenyataan dalam kehidupannya (hubungan antara teori dengan kenyataan).

(Gordon, 2001; Karjcik, 2003; Slavin, Madden, Dolan & Wasik, 1994; Torp dan Sage, 2003) mendeskripsikan bahwa model pembelajaran berbasis masalah ini memiliki fitur-fitur sebagai berikut:

1. Pertanyaan atau masalah perangsang

2. Fokus interdisipliner

3. Investigasi autentik

4. Produksi artepak dan exhibit

5. Kolaborasi

Pembelajaran berbasis masalah dilakukan secara benar sesuai dengan prinsip dan karakteristik pembelajaran, maka ada beberapa dampak tidak langsung yang dapat diperoleh siswa setelah pembelajaran berbasis masalah diimplementasikan dalam proses pembelajaran dikelas, yaitu:

a. Keterampilan melakukan penelitian/penyelidikan sebagai dasar pemecahanmasalah secara ilmiah.
b. Perilaku dan keterampilan sosial.
c. Keterampilan belajar mandiri.

- **Hakikat masalah dalam model Problem based learning**

1. Bahan pelajaran harus mengandung isu-isu yang mengandung konflik yang bisa bersumber dari berita; rekaman video dan yang lainnya.
2. Bahannya bersifat familiar dengan siswa, sehingga setiap siswa dapat mengikutinya dengan baik.
3. Bahan yang dipilih merupakan bahan yang berhubungan dengan kepentingan orang banyak (universal).
4. Bahan yang dipilih merupakan bahan yang mendukung tujuan atau kompetensi yang harus dimiliki oleh siswa sesuai kurikulum yang berlaku.
5. Bahan yang dipilih sesuai dengan minat siswa sehingga setiap siswa merasa perlu untuk mempelajarinya.
- **Tahapan-Tahapan Pembelajaran Problem Based Learning**

 Banyak ahli yang menjelaskan bentuk peranan SPBM. Sanjaya (2008) yang mengutip pendapat John Dewey seorang ahli pendidikan berkebangsaan Amerika menjelaskan 6 langkah yang kemudian dia namakan metode pemecahan masalah (*problem solving*), yaitu :

 1. **Merumuskan masalah**, yaitu langkah siswa menentukan masalah yang akan dipecahkan.
 2. **Menganalisis masalah**, yaitu langkah siswa meninjau masalah secara dari berbagai sudut pandang.
 3. **Merumuskan hipotesis**, yaitu langkah siswa merumuskan berbagai kemungkinan pemecahan sesuai dengan pengetahuan untuk memecahkan masalah.
 4. **Mengumpulkan data**, yaitu langkah siswa mencari dan menggambarkan informasi yang diperlukan untuk pemecahan masalah.
 5. **Pengujuan Hipotesis**, yaitu langkah siswa mengambil dan merumuskan kesimpulan sesuai dengan penerimaan dan penolakan hipotesis yang diajukan.
 6. **Merumuskan rekomendasi pemecahan masalah**, yaitu langkah siswa menggambarkan rekomendasi yang dapat dilakukan sesuai dengan rumusan.

 David Johnson & Johnson mengemukakan ada 5 langkah melalui kegiatan kelompok, yaitu :

 1. **Mengedefinisikan masalah**, yaitu merumuskan masalah dari peristiwa tertentu yang mengandung isu konflik, hingga siswa menjadi jelas masalah apa yang akan dikaji.
 2. **Mendiagnosa masalah**, yaitu menentukan sebab-sebab terjadinya masalah, serta menganalisis berbagai faktor, dari baik faktor yang bisa mengahambat maupun faktor yang dapat mendukung dalam penyelesaian masalah.
 3. **Merumuskan alternatif strategi**, yaitu menguji setiap tindakan yang telah dirumuskan melalui diskusi kelas.
 4. **Menentukan dan menerapkan strategi pilihan**, yaitu pengambilan keputusan tentang strategi mana yang dapat dilakukan.
 5. **Melakukan evaluasi**, baik evaluasi proses maupun evaluasi hasil. Evaluasi proses adalah evaluasi terhadap seluruh kegiatan, sedangkan evaluasi hasil
Richard I. Arend (2008) mengemukakan langkah-langkah melaksanakan pembelajaran berbasis masalah sebagai berikut:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Kegiatan</th>
<th>Perilaku Guru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memberikan orientasi tentang permasalahan</td>
<td>1. Guru membahas tujuan pelajaran</td>
</tr>
<tr>
<td></td>
<td>kepada siswa</td>
<td>2. Guru mendeskripsikan berbagai kebutuhan logistik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Guru memberikan motivasi kepada siswa untuk terlibat secara aktif dalam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kegiatan pemecahan masalah.</td>
</tr>
<tr>
<td>2</td>
<td>Mengorganisir siswa untuk meneliti</td>
<td>Guru membantu siswa untuk mendefinisikan dan mengorganisikan tugas-tugas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>belajar yang terkait dengan permasalahannya.</td>
</tr>
<tr>
<td>3</td>
<td>Membantu investigasi mandiri dan kelompok</td>
<td>Guru mendorong siswa mendapat informasi yang tepat, melaksanakan ekperimen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dan memberi penjelasan dan solusi.</td>
</tr>
<tr>
<td>4</td>
<td>Mengembangkan dan mempresentasikan arteifak</td>
<td>Guru membantu siswa dalam merencanakan dan menyiapkan artifak dan exhibit</td>
</tr>
<tr>
<td></td>
<td>dan exhibit</td>
<td>yang tepat seperti laporan, rekaman video dan model-model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guru membantu siswa menyampaikan/mempresentasikan kepada orang lain.</td>
</tr>
<tr>
<td>5</td>
<td>Menganalisis dan mengevaluasi proses</td>
<td>Guru membantu siswa untuk melakukan refleksi terhadap investigasinya dan</td>
</tr>
<tr>
<td></td>
<td>mengatasi masalah</td>
<td>proses-proses yang mereka gunakan.</td>
</tr>
</tbody>
</table>

Beberapa catatan khusus untuk setiap langkah tersebut di atas yang perlu mendapat perhatian dalam Implementasi pembelajaran berbasis masalah adalah sebagai berikut:

1. Pada saat guru menjelaskan tujuan pembelajaran, ada beberapa hal yang harus disadari oleh seorang guru. Tujuan yang diinginkan dalam pembelajaran berbasis masalah bukanlah untuk mempelajari sejumlah informasi baru tetapi menginvestigasi berbagai permasalahan penting untuk membangun/membuat siswa menjadi mandiri.
2. Pertanyaan atau permasalahan yang akan diinvestigasi, bukan masalah yang harus memerlukan “YA atau TIDAK”, tetapi permasalahan yang memerlukan jawaban dengan kemampuan berpikir yang lebih kompleks.

3. Mengorganisikan siswa untuk meneliti. Dalam mengorganisir siswa baik dalam kelompok kecil maupun mandiri perlu diperhatikan dan diberikan orientasi yang jelas kepada siswa tentang permasalahan yang akan dibahas, hal ini dapat dilakukan dengan menggunakan video pendek, berita dikoran dan sebagainya.

➢ Implementasi dan Evaluasi Pembelajaran Berbasis Masalah

a. Penataan Lingkungan Belajar Dalam Pembelajaran Berbasis Masalah

Lingkungan belajar merupakan salah satu komponen yang harus mendapat perhatian guru dalam pembelajaran berbasis masalah, agar pembelajaran berlangsung lancar tanpa adanya disturbsi. Ada beberapa hal yang akan diperhatikan dalam penataan lingkungan belajar sebagai berikut :

1. Menangani situasi multitugas

Pada kelas yang gurunya menggunakan pembelajaran berbasis masalah banyak tugas-tugas yang harus diselesaikan oleh siswa yang terjadi secara simultan. Untuk membuat pekerjaan kelas yang multi tugas ini bekerja secara efektif, maka guru sebaiknya memberikan bimbingan kepada siswa untuk :
- Bekerja secara mandiri dan bekerja bersama-sama.
- Guru hendaknya mengembangkan cuing sistem untuk memperingatkan siswa dan membantu mereka menjalani transisi dari satu tipe tugas ke tipe tugas belajar lainnya.
- Guru membuat chart dan jadwal tentang tugas-tugas yang harus dijadwalkan dan tenggang waktu penyelesaiannya masing-masing tugas tersebut.
- Guru memantau kemajuan masing-masing siswa atau kelompok siswa selama multitugas.

2. Menyesuaikan dengan tingkat penyelesaian yang berbeda
Salah satu masalah rutin yang dihadapi oleh guru-guru di berbagai tingkatan sekolah mulai dari tingkat terendah sampai pada perguruan tinggi pun juga terjadi adalah tingkat penyelesaian tugas yang berbeda. Untuk mengelola kondisi penyelesaian tugas seperti di atas, diperlukan kemampuan guru untuk mensiasati dengan beberapa kegiatan berikut ini:

a. Buat aturan waktu yang tegas, prosedur tugas *downtime activities*.

b. Untuk siswa yang menyelesaikan tugas lebih awal dan memiliki siswa waktu akan lebih banyak kalau diberikan bahan bacaan yang menarik untuk dibaca yang fungsinya sebagai pengayaan bahan ajar atau dapat juga diberikan bahan-bahan permainan edukatif.

c. Memberikan tugas pengayaan kepada siswa yang lebih maju dengan memberikan masalah yang menentang untuk diuji coba dilaboratorium, dengan demikian siswa akan lebih terasah kemampuan intelektualnya.

d. Guru mendorong siswa yang lebih maju untuk menmbantu temannya yang belum selesai (tutor sebaya).

3. Memantau dan mengelola pekerjaan siswa

 Seperti diketahui pembelajaran berbasis masalah adalah pembelajaran yang syarat dengan tugas-tugas (multitugas) dan harus diselesaikan siswa secara simultan, konsekuensinya maka pemantauan dan pengelolaan pekerjaan siswa menjadi suatu yang sangat krusial dalam strategi pembelajaran ini. Ada tiga hal pokok yang perlu dilakukan guru untuk menjamin pembelajaran berbasis masalah menjadi akuntabel yaitu:

 a) Persyaratan tugas untuk semua siswa harus dijelaskan secara tegas dan jelas serta rinci.

 b) Pekerjaan siswa harus dipantau dan umpan balik harus diberikan pada pekerjaan siswa yang sedang berjalan.

 c) Catatan perkembangan siswa yang harus dibuat.

4. Mengatur gerakan dan perilaku di luar kelas

 Apabila guru menugaskan siswa menyelesaikan tugasnya untuk memecahkan permasalahan di laboratorium, maka guru sudah seharusnya memastikan bahwa siswanya memahami secara jelas apa dan bagaimana bekerja di laboratorium, di bengkel, atau diperpustakaan, maka pastikan siswa...
mengerti bagaimana mencari bahan bacaan secara cepat dan tepat, bagaimana mengelola bahan bacaan, membuat catatan kecil yang mudah dan cepat dalam penggunaannya.

b. Asesmen dan Evaluasi Dalam Pembelajaran Berbasis Masalah

Pada dasarnya sistem evaluasi pada pembelajaran dengan menggunakan strategi lainnya dapat diterapkan pada pembelajaran berbasis masalah, yang harus disadari adalah bahwa evaluasi yang digunakan harus sesuai dengan tujuan yang ingin dicapai, artinya evaluasi harus dapat mengukur apa yang menjadi indikator keberhasilan belajar.

- Pengukuran Pemahaman

Pembelajaran berbasis masalah menjangkau ke luar pengembangan pengetahuan fakultatif tentang sebuah topik, yakni pengembangan pemahaman yang agak sophisticated tentang berbagai masalah dan dunia di sekitar siswa. Untuk mengukur pemahaman siswa tentang suatu topik dapat dibuat tes yang agak terbuka jawabannya, kepada siswa dalam bentuk karangan esei.

- Mengases Potensi Belajar

Tes performasi kebanyakan hanya mengukur pengetahuan dan keterampilan pada titik waktu tertentu, tetapi belum mengases potensi belajar atau kesiapan belajar siswa. Untuk itu tes kesiapan untuk membaca dan bidang perkembangan bahasa lainnya dapat digunakan, dan alat tes tersebut sudah banyak tersedia dan telah memiliki tingkat vadilitas dan rehabilitas yang tidak diragukan lagi.

➢ Keunggulan dan Kelemahan Pembelajaran Berbasis Masalah

1. Keunggulan

a. Pemecahan masalah (problem solving) merupakan teknik yang cukup bagus untuk lebih memahami isi pelajaran.

b. Pemecahan masalah (problem solving) dapat menentang kemampuan siswa serta memberikan kepuasan untuk menemukan pengetahuan baru bagi siswa.

c. Pemecahan masalah (problem solving) dapat meningkatkan aktivitas pembelajaran siswa.
d. Pemecahan masalah (problem solving) dapat membantu siswa bagaimana mentranfer pengetahuan mereka untuk memahami masalah dalam kehidupan nyata.

e. Pemecahan masalah (problem solving) dapat membantu siswa untuk mengembangkan pengetahuan barunya dan bertanggung jawab dalam pembelajaran yang mereka lakukan.

f. Melalui pemecahan masalah (problem solving) bisa memperlihatkan kepada siswa bahwa setiap mata pelajaran.

g. Pemecahan masalah (problem solving) dianggap lebih menyenangkan dan disukai siswa.

h. Pemecahan masalah (problem solving) dapat mengembangkan kemampuan siswa untuk berpikir lebih kritis dan mengembangkan kemampuan mereka untuk menyesuaikan dengan pengetahuan.

i. Pemecahan masalah (problem solving) dapat memberikan kesempatan pada siswa untuk mengaplikasikan pengetahuan yang mereka miliki dalam dunia nyata.

j. Pemecahan masalah (problem solving) dapat mengembangkan minat siswa untuk secara terus-menerus belajar sekalipun belajar pada pendidikan formal telah berakhir.

k. Strategi pembelajaran berbasis masalah dapat membentuk siswa untuk memiliki kemampuan berpikir tingkat tinggi, yang dibarengi dengan kemampuan inovatif dan sikap kreatif akan tumbuh dan berkembang.

l. Dengan strategi pembelajaran berbasis masalah, kemandirian siswa dalam belajar akan mudah terbentuk, yang pada akhirnya akan menjadi kebiasaan dalam menyelesaikan berbagai permasalahan yang ditemuinya dalam aktivitas kehidupan nyata sehari-hari ditengah-tengah masyarakat.

2. Kelemahan

a) Manakala siswa tidak memiliki minat atau tidak mempunyai kepercayaan bahwa masalah yang dipelajari sulit untuk dipecahkan, maka mereka akan merasa enggan untuk mencoba.

b) Keberhasilan strategi pembelajaran melalui problem solving membutuhkan cukup waktu untuk persiapan dan pelaksanaannya.
c) Tanpa pemahaman mengapa mereka berusaha untuk memecahkan masalah yang sedang dipelajari, maka mereka tidak akan belajar apa yang mereka ingin pelajari.

2. Model Pembelajaran Proyek Based Learning

Pembelajaran berbasis proyek adalah suatu model pembelajaran yang melibatkan suatu proyek dalam proses pembelajaran. Proyek yang dikerjakan oleh siswa dapat berupa proyek perseorangan atau kelompok dan dilaksanakan dalam jangka waktu tertentu secara kolaboratif, menghasilkan sebuah produk, yang hasilnya kemudian akan ditampilkan atau dipresentasikan. Pelaksanaan proyek dilakukan secara kolaboratif dan inovatif, unik, yang berfokus pada pemecahan masalah yang berhubungan dengan kehidupan siswa. Pembelajaran berbasis proyek merupakan bagian dari metoda instruksional yang berpusat pada pebelajar. Artinya, strategi tersebut hanya membahas tentang bagaimana mengajarkan keterampilan dasar kejuruan. Jadi, strategi tersebut belum membahas tentang bagaimana mengajarkan keterampilan – keterampilan yang bersifat kompleks. Namun menurut Nolker & Schoenfeldt (2005) metode atau strategi mengajar keterampilan dasar kejuruan seperti yang telah dibahas diatas selalu memiliki kelemahan, antara lain:
- Tidak sepenuhnya dapat membekali kemampuan atau ketrampilan guna menghadapi situasi kritis dalam profesi.
- Menyebabkan siswa bergantung pada pengajar.
- Merintangi perkembangan kemampuan untuk bekerjasama

Definisi tersebut sejalan dengan uraian yang dipaparkan oleh Bell (2005) yaitu sebagai berikut:

a. **Project Based Learning is curriculum fueled and standards based.**
Model pembelajaran berbasis proyek merupakan model pembelajaran yang menghendaki adanya standar isi dalam kurikulumnya. Melalui Pembelajaran berbasis proyek, yang dimulai dengan memunculkan pertanyaan penuntun (aguiding question) dan membimbing peserta didik dalam sebuah proyek kolaboratif yang mengintegrasikan berbagai subjek (materi) dalam kurikulum.

b. **Project Based Learning asks a question or poses a problem that each student can answer.**
Pembelajaran berbasis proyek adalah model pembelajaran yang menuntut pengajar dan atau peserta didik mengembangkan pertanyaan penuntun (a guiding question). Mengingat bahwa masing-masing peserta didik memiliki gaya belajar yang berbeda, maka pembelajaran berbasis proyek memberikan kesempatan kepada para peserta didik untuk menggali konten (materi) dengan menggunakan berbagai cara yang bermakna bagi dirinya, dan melakukan eksperimen secara kolaboratif. Hal ini memungkinkan setiap peserta didik pada akhirnya mampu menjawab pertanyaan penuntun.

c. *Project Based Learning asks students to investigate issues and topics addressing real-world problems while integrating subjects across the curriculum.*

Pembelajaran berbasis proyek merupakan model pembelajaran yang menuntut peserta didik membuat “jembatan” yang menghubungkan antar berbagai subjek materi. Selain itu, pembelajaran berbasis proyek merupakan investigasi mendalam tentang sebuah topik dunia nyata.

d. *Project Based Learning is a models that fosters abstract, intellectual tasks to explore complex issues.*

Pembelajaran berbasis proyek merupakan model pembelajaran yang memperhatikan pemahaman peserta didik dalam melakukan eksplorasi, penilaian, interpretasi dan mensintesis informasi melalui cara yang bermakna. Pembelajaran berbasis proyek juga merupakan suatu model pembelajaran yang menyangkut pemusatan pertanyaan dan masalah yang bermakna, pemecahan masalah, pengambilan keputusan, proses pencarian berbagai sumber, pemberian kesempatan kepada anggota untuk bekerja secara kolaborasi, dan menutup dengan presentasi produk nyata. Pembelajaran berbasis proyek ini tidak hanya mengkaji hubungan antara informasi teoritis dan praktek, tetapi juga memotivasi siswa untuk merefleksi apa yang mereka pelajari dalam pembelajaran dalam sebuah proyek nyata serta dapat meningkatkan kinerja ilmiah mereka Grant (2008).

Secara lebih rinci, model pembelajaran berbasis proyek mengikuti lima langkah utama (Santyasa, 2006), yaitu:

27
1. Menetapkan tema proyek:
Tema proyek hendaknya memenuhi indikator-indikator berikut:
 a. Memuat gagasan yang penting dan menarik
 b. Mendeskripsikan masalah kompleks
 c. Mengutamakan pemecahan masalah.
2. Menetapkan konteks belajar
Konteks belajar hendaknya memenuhi indikator-indikator berikut:
 a. Mengutamakan otonomi siswa
 b. Melakukan inquiry
 c. Siswa mampu mengelola waktu secara efektif dan efisien
 d. Siswa belajar penuh dengan kontrol diri dan bertanggung jawab
3. Merencanakan aktivitas
Pengalaman belajar terkait dengan merencanakan proyek adalah mencari sumber yang berkaitan dengan tema proyek.
4. Memproses aktivitas
Indikator-indikator memroses aktivitas meliputi antara lain:
 a. Membuat sketsa
 b. Melukiskan analisa rancangan proyek.
5. Penerapan aktivitas
 a. mengerjakan proyek berdasarkan sketsa
 b. membuat laporan terkait dengan proyek, dan
 c. mempresentasikan proyek

Kelima langkah tersebut mengandung interpretasi bahwa dalam mengerjakan proyek, siswa dapat berkolaborasi dan melakukan investigasi dalam kelompok kolaboratif antara 4-5 orang. Keterampilan-keterampilan yang dibutuhkan dan dikembangkan oleh siswa dalam tim adalah merencanakan, mengorganisasikan, negosiasi, dan membuat konsensus tentang tugas yang dikerjakan, siapa yang mengerjakan apa, dan bagaimana mengumpulkan informasi yang dibutuhkan dalam berinvestigasi. Keterampilan yang dibutuhkan dan yang akan dikembangkan oleh siswa merupakan keterampilan yang esensial sebagai landasan untuk keberhasilan proyek mereka. Keterampilan-keterampilan yang dikembangkan melalui kolaborasi dalam tim menyebabkan pembelajaran menjadi aktif, di mana setiap individu
memiliki keterampilan yang bervariasi sehingga setiap individu mencoba menunjukkan keterampilan yang mereka miliki dalam kerja tim mereka. Pembelajaran secara aktif dapat memimpin siswa ke arah peningkatan keterampilan dan kinerja ilmiah. Kinerja ilmiah tersebut mencakup prestasi akademis, mutu interaksi hubungan antar pribadi, rasa harga diri, persepsi dukungan sosial lebih besar, dan keselarasan antar para siswa.

Menurut Nolker & Schoenfeldt (2003) mengingat prinsip strategi proyek yang sangat khas, maka ada persyaratan tertentu yang harus dipenuhi agar strategi pembelajaran proyek dapat diterapkan, antara lain:

a. Sasaran yang harus dicapai berupa penyelesaian suatu problem yang kompleks.

b. Para peserta proyek memiliki kebebasan seluas mungkin, untuk mengadakan penentuan menganai subjek, perencanaan, pelaksanaan, serta penerapan proyek.

c. Dalam proyek, keputusan diambil berdasarkan konsensus.

d. Pengajar atau instruktur berintegrasi dalam kelompok proyek.

e. Diadakan pertalian antara teori dan praktik.

f. Diperlukan ketrampilan lebih dari satu bidang guna menyelesaikan problem yang ditimbulkan.

g. Pekerjaan proyek dibagi dalam kelompok – kelompok.

h. Sasaran proyek adalah menghasilkan sesuatu yang nyata dan berfaedah. Berpijak pada uraian diatas, maka dalam pelaksanaan pembelajaran praktik keterampilan kejuruan dengan strategis berbasis proyek, proyek kerja apa yang akan dibuat atau dikerjakan siswa harus sudah jelas. Selain itu bentuk proyek yang dirancang tersebut harus memberi kemungkinan bagi siswa untuk saling bekerja sama seoptimal mungkin antara sesama anggota kelompok.

Implikasi model pembelajaran berbasis proyek dalam proses belajar mengajar adalah pembelajaran berbasis proyek memberikan kebebasan kepada peserta didik untuk merencanakan aktivitas belajar, melaksanakan proyek secara kolaboratif, dan pada akhirnya menghasilkan produk kerja yang dapat dipresentasikan kepada orang lain. Selain itu, dalam
pembelajaran berbasis proyek siswa menjadi ter dorong lebih aktif beraktivitas dalam belajar sehingga dapat meningkatkan kinerja ilmiah siswa, sedangkan guru hanya sebagai fasilitator dan mengevaluasi proses dan produk hasil kinerja siswa meliputi outcome yang mampu ditampilkan dari hasil proyek yang dikerjakan.

Pembelajaran berbasis proyek yang berpusat pada pebelajar dan memberikan kesempatan kepada pebelajar untuk menyelidiki topik permasalahan, membuat pebelajar menjadi lebih otonomi sehingga mereka dapat membangun pengetahuan mereka sendiri serta pembelajaran menjadi lebih bermakna. Aplikasi model pembelajaran berbasis proyek ini mempunyai beberapa alasan, yaitu:
1. Menawarkan potensi produksi dan tindakan pengetahuan kolektif di dalam proyek sosial.
2. Dalam tradisi pendidikan masyarakat radikal, pengajaran merupakan underpinned oleh kepercayaan yang bermanfaat pada pengembangan pengetahuan yang melibatkan pengembangan pemikiran
3. Proses kerja kelompok yang saling mendukung dapat membuka berbagai peluang untuk kreativitas, karena para siswa mengadakan percobaan dengan penafsiran berpikir dan data berbeda untuk menyelesaikan permasalahan dalam proyek mereka yang dapat diterapkan untuk mengembangkan pembentukan masyarakat praktek Grant (2008).

- Tahapan Pembelajaran.
Sama seperti pembelajaran pada umumnya, strategi pembelajaran berbasis proyek terdiri atas tiga tahapan utama, yaitu:
a. Tahap perencanaan pembelajaran proyek.
Mengingat perencanaan strategi pembelajaran berbasis proyek harus disusun secara sistematis maka langkah – langkah perencanaan dirancang sebagai berikut:
1. Merumuskan tujuan pembelajaran atau proyek.
2. Menganalisis karakteristik siswa.
3. Merumuskan strategi pembelajaran.
4. Membuat lembar kerja.
5. Merancang kebutuhan sumber belajar.

b. Tahap pelaksanaan pembelajaran proyek. Agar proses pelaksanaan praktik kejuruan dengan menggunakan strategi pembelajaran berbasis proyek ini berjalan dengan baik, ada beberapa kegiatan yang dilakukan:
1. Mempersiapkan sumber belajar yang disiapkan.
2. Menjelaskan tugas proyek dan gambar kerja.
5. Tahap evaluasi pembelajaran proyek.

Tahap evaluasi merupakan tahap penting dalam pembelajaran berbasis proyek. Agar guru mengetahui sejauh mana tujuan pembelajaran praktik dapat tercapai. Penilaian melalui tugas dilakukan terhadap tugas yang dikerjakan siswa secara individu atau kelompok untuk periode tertentu. Tugas sering berkaitan dengan pengumpulan data/bahan, analisis data, penyajian data atau bahan, dan pembuatan laporan. Penilaian tugas dapat dilakukan terhadap proses selama pengerjaan tugas atau terhadap hasil tugas akhir. Dengan demikian guru dapat menetapkan hal – hal yang perlu dinilai. Pelaksanaan penilaian dapat menggunakan daftar cek (checklist) atau skala penilaian (rating scale).

Keberhasilan penerapan pembelajaran berbasis proyek pada siswa tergantung dari rancangan tahap pembelajaran. Tahap pelajaran yang dirancang harus dapat menggali penemuan-penemuan mereka sendiri. Peran pendidik dalam pembelajaran ini adalah sebagai mediator dan fasilitator, dimana dalam penerapan pembelajaran berbasis proyek, pendidik harus mampu memotivasi siswa untuk mengemukakan pendapat mereka dalam presentasi proyek secara demokratis.

3. Model Pembelajaran Discovery Learning
 - Pengertian Pembelajaran Discovery Learning

Penemuan (discovery) merupakan suatu model pembelajaran yang dikembangkan berdasarkan pandangan konstruktivisme. Model ini menekankan
pentingnya pemahaman struktur atau ide-ide penting terhadap suatu disiplin ilmu, melalui keterlibatan siswa secara aktif dalam proses pembelajaran.

Pengertian discovery learning menurut Jerome Bruner adalah metode belajar yang mendorong siswa untuk mengajukan pertanyaan dan menarik kesimpulan dari prinsip-prinsip umum praktis contoh pengalaman. Dan yang menjadi dasar ide J. Bruner ialah pendapat dari Piaget yang menyatakan bahwa anak harus berperan secara aktif didalam belajar di kelas. Untuk itu Bruner memakai cara dengan apa yang disebutnya discovery learning, yaitu dimana murid mengorganisasikan bahan yang dipelajari dengan suatu bentuk akhir.

Menurut Bell (1978) belajar penemuan adalah belajar yang terjadi sebagai hasil dari siswa memanipulasi, membuat struktur dan mentransformasikan informasi sedemikian sehingga ia menemukan informasi baru. Dalam belajar penemuan, siswa dapat membuat perkiraan (conjecture), merumuskan suatu hipotesis dan menemukan kebenaran dengan menggunakan proses inductif atau proses deduktif, melakukan observasi dan membuat ekstrapolasi.

Berdasarkan pengertian di atas dapat disimpulkan bahwa pembelajaran discovery learning adalah suatu model untuk mengembangkan cara belajar siswa aktif dengan menemukan sendiri, menyelidiki sendiri, maka hasil yang diperoleh akan setia dan tahan lama dalam ingatan, tidak akan mudah dilupakan.

- **Tujuan Pembelajaran Discovery Learning**

 Bell (1978) mengemukakan beberapa tujuan spesifik dari pembelajaran dengan penemuan, yakni sebagai berikut:

 a. Dalam penemuan siswa memiliki kesempatan untuk terlibat secara aktif dalam pembelajaran. Kenyataan menunjukan bahwa partisipasi banyak siswa dalam pembelajaran meningkat ketika penemuan digunakan.

 b. Melalui pembelajaran dengan penemuan, siswa belajar menemukan pola dalam situasi konkret maupun abstrak, juga siswa banyak meramalkan (extrapolate) informasi tambahan yang diberikan.

 c. Siswa juga belajar merumuskan strategi tanya jawab yang tidak rancu dan menggunakan tanya jawab untuk memperoleh informasi yang bermanfaat dalam menemukan.

 d. Pembelajaran dengan penemuan membantu siswa membentuk cara kerja bersama yang efektif, saling membagi informasi, serta mendengar dan menggunakan ide-ide orang lain.

 e. Terdapat beberapa fakta yang menunjukan bahwa keterampilan-keterampilan, konsep-konsep dan prinsip-prinsip yang dipelajari melalui penemuan lebih bermakna.

 f. Keterampilan yang dipelajari dalam situasi belajar penemuan dalam beberapa kasus, lebih mudah ditransfer untuk aktivitas baru dan diaplikasikan dalam situasi belajar yang baru.

- **Strategi-strategi dalam Pembelajaran Discovery Learning**

 Dalam pembelajaran dengan penemuan dapat digunakan beberapa strategi, strategi-strategi yang dimaksud adalah sebagai berikut:

 a) Strategi Induktif

 Strategi ini terdiri dari dua bagian, yakni bagian data atau contoh khusus dan bagian generalisasi (kesimpulan). Data atau contoh khusus tidak dapat digunakan sebagai bukti, hanya merupakan jalan menuju kesimpulan. Mengambil kesimpulan (penemuan) dengan menggunakan strategi induktif ini selalu
mengandung resiko, apakah kesimpulan itu benar atau tidak. Karenanya
kesimpulan yang ditemukan dengan strategi induktif sebaiknya selalu
menggunakan perkataan “barangkali” atau “mungkin”.

b) Strategi deduktif

Dalam matematika metode deduktif memegang peranan penting dalam
hal pembuktian. Karena matematika berisi argumentasi deduktif yang saling
berkaitan, maka metode deduktif memegang peranan penting dalam pengajaran
matematika. Dari konsep matematika yang bersifat umum yang sudah diketahui
siswa sebelumnya, siswa dapat diarahkan untuk menemukan konsep-konsep
lain yang belum ia ketahui sebelumnya. Sebagai contoh, untuk menentukan
rumus luas lingkaran, siswa dapat diarahkan untuk membagi kertas berbentuk
lingkaran menjadi n buah sector yang sama besar, kemudian menyusunnya
sedemikian rupa sehingga berbentuk seperti persegi panjang dan rumus
keliling lingkaran yang sudah diketahui sebelumnya, siswa akan dapat
menemukan luas lingkaran.

- **Peranan Guru dalam Pembelajaran Discovery Learning**

 Dahar (2005) mengemukakan beberapa peranan guru dalam
 pembelajaran dengan penemuan, yakni sebagai berikut:
 - Merencanakan pelajaran sedemikian rupa sehingga pelajaran itu terpusat
 pada masalah-masalah yang tepat untuk diselidiki para siswa.
 - Menyajikan materi pelajaran yang diperlukan sebagai dasar bagi para siswa
 untuk memecahkan masalah. Sudah seharusnya materi pelajaran itu dapat
 mengarah pada pemecahan masalah yang aktif dan belajar penemuan,
 misalnya dengan menggunakan fakta-fakta yang berlawanan.
 - Guru juga harus memperhatikan cara penyajian yang enaktif, ikonik, dan
 simbolik.
 - Bila siswa memecahkan masalah di laboratorium atau secara teoritis, guru
 hendaknya berperan sebagai seorang pembimbing atau tutor. Guru
 hendaknya jangan mengungkapkan terlebih dahulu prinsip atau aturan yang
 akan dipelajari, tetapi ia hendaknya memberikan saran-saran bilamana
diperlukan. Sebagai tutor, guru sebaiknya memberikan umpan balik pada
waktu yang tepat.
Menilai hasil belajar merupakan suatu masalah dalam belajar penemuan. Secara garis besar tujuan belajar penemuan ialah mempelajari generalisasi-generalisasi dengan menemukan generalisai-generalisasi itu.

Kelemahan dan Kelebihan Model Pembelajaran Discovery Learning

a. Kelebihan discovery learning
 - Dapat meningkatkan kemampuan siswa untuk memecahkan masalah (problem solving)
 - Dapat meningkatkan motivasi
 - Mendorong keterlibatan keaktifan siswa
 - Siswa aktif dalam kegiatan belajar mengajar. Sebab ia berpikir dan menggunakan kemampuan untuk menemukan hasil akhir.
 - Menimbulkan rasa puas bagi siswa. Kepuasan batin ini mendorong ingin melakukan penemuan lagi sehingga minat belajarnya meningkat
 - Siswa akan dapat mentransfer pengetahuannya keberbagai konteks.
 - Melatih siswa belajar mandiri

b. Kekurangan discovery learning
 - Guru merasa gagal mendeteksi masalah dan adanya kesalah fahaman antara guru dengan siswa
 - Menyita waktu banyak. Guru dituntut mengubah kebiasaan mengajar yang umumnya sebagai pemberi informasi menjadi fasilitator, motivator, dan pembimbing siswa dalam belajar. Untuk seorang guru ini bukan pekerjaan yang mudah karena itu guru memerlukan waktu yang banyak. Dan sering kali guru merasa belum puas kalau tidak banyak memberi motivasi dan membimbing siswa belajar dengan baik.
 - Menyita pekerjaan guru.
 - Tidak semua siswa mampu melakukan penemuan
 - Tidak berlaku untuk semua topik.

Aplikasi Pembelajaran Discovery Learning di Kelas

a. Tahap Persiapan dalam Aplikasi Model Discovery Learning
 Seorang guru, dalam mengaplikasikan metode discovery learning di kelas harus melakukan beberapa persiapan. Berikut ini tahap perencanaan menurut Bruner, yaitu:
- Menentukan tujuan pembelajaran.
- Melakukan identifikasi karakteristik siswa (kemampuan awal, minat, gaya belajar, dan sebagainya).
- Memilih materi pelajaran
- Menentukan topik-topik yang harus dipelajari siswa secara induktif (dari contoh-contoh generalisasi).
- Mengembangkan bahan-bahan belajar yang berupa contoh-contoh, ilustrasi, tugas dan sebagainya untuk dipelajari siswa.
- Mengatur topik-topik pelajaran dari yang sederhana ke kompleks, dari yang konkret ke abstrak, atau dari tahap enaktif, ikonik sampai ke simbolik.
- Melakukan penilaian proses dan hasil belajar siswa (Suciati & Prasetya Irawan dalam Budiningsih, 2005).
- prosedur aplikasi discovery learning

Adapun menurut Syah (2004) dalam mengaplikasikan model Discovery Learning di kelas tahapan atau prosedur yang harus dilaksanakan dalam kegiatan belajar mengajar secara umum adalah sebagai berikut:

a. Stimulation (stimulasi/pemberian rangsangan).

Pertama-tama pada tahap ini pelajar dihadapkan pada sesuatu yang menimbulkan kebingungannya, kemudian dilanjutkan untuk tidak memberi generalisasi, agar timbul keinginan untuk menyelidiki sendiri (Taba dalam Affan, 1990). Tahap ini Guru bertanya dengan mengajukan persoalan, atau menyuruh anak didik membaca atau mendengarkan uraian yang memuat permasalahan. Stimulation pada tahap ini berfungsi untuk menyediakan kondisi interaksi belajar yang dapat mengembangkan dan membantu siswa dalam mengeksplorasi bahan. Dalam hal ini Bruner memberikan stimulation dengan menggunakan teknik bertanya yaitu dengan mengajukan pertanyaan-pertanyaan yang dapat menghadapkan siswa pada kondisi internal yang mendorong eksplorasi.

b. Problem statement (pernyataan/ identifikasi masalah).

Setelah dilakukan stimulation langkah selanjutnya adalah guru memberi kesempatan kepada siswa untuk mengidentifikasi sebanyak mungkin agenda-agenda masalah yang relevan dengan bahan pelajaran, kemudian salah satunya dipilih dan dirumuskan dalam bentuk hipotesis (jawaban sementara atas pertanyaan masalah) (Syah 2004).
c. Data *collection* (pengumpulan data).

Ketika eksplorasi berlangsung guru juga memberi kesempatan kepada para siswa untuk mengumpulkan informasi sebanyak-banyaknya yang relevan untuk membuktikan benar atau tidaknya hipotesis (Syah, 2004). Pada tahap ini berfungsi untuk menjawab pertanyaan atau membuktikan benar tidak hipotesis, dengan demikian anak didik diberi kesempatan untuk mengumpulkan (collection) berbagai informasi yang relevan, membaca literature, mengamati objek, wawancara dengan nara sumber, melakukan uji coba sendiri dan sebagainya (Djamarah, 2002).

d. Data *processing* (pengolahan data).

Menurut Syah (2004:244) data processing merupakan kegiatan mengolah data dan informasi yang telah diperoleh para siswa baik melalui wawancara, observasi, dan sebagainya, lalu ditafsirkan. Data processing disebut juga dengan pengkodean coding/ kategorisasi yang berfungsi sebagai pembentukan konsep dan generalisasi. Dari generalisasi tersebut siswa akan mendapatkan pengetahuan baru tentang alternatif jawaban/ penyelesaian yang perlu mendapat pembuktian secara logis.

e. *Verification* (pentahkikan/pembuktian).

Verification menurut Bruner, bertujuan agar proses belajar akan berjalan dengan baik dan kreatif jika guru memberikan kesempatan kepada siswa untuk menemukan suatu konsep, teori, aturan atau pemahaman melalui contoh-contoh yang ia jumpai dalam kehidupannya (Budiningsih, 2005:41).

f. *Generalization* (menarik kesimpulan/generalisasi)

4. Model Pembelajaran Inquiry Learning

a. Definisi

Menurut National Science Education Standards (Sebuah Standar Pendidikan Sain di Amerika) inquiry instruction adalah sebuah pembelajaran yang melibatkan siswa dalam sebuah kegiatan mempertanyakan, analisis data, dan berpikir kritis. Siswa semua tingkatan mendapatkan kesempatan untuk berlatih penelitian untuk mengembangkan kemampuan berpikir dan berperilaku ilmiah termasuk didalamnya mengajukan pertanyaan, merencanakan dan melakukan penelitian, menggunakan alat dan teknik pengumpul data, berpikir kritis, berpikir logis mengenai hubungan antar bukti dan penjelasan, membangun dan menganalisis penjelasan serta mengkomunikasikan argumen secara ilmiah.

Model pembelajaran Inquiri merupakan sebuah kegiatan belajar dimana siswa menjawab pertanyaan penelitian melalui metode ilmiah. Kegiatan inquiri yang paling otentik adalah ketika siswa menjawab pertanyaan yang diajukan sendiri melalui analisis data yang dikumpulkannya sendiri secara independent. Meskipun begitu masih tergolong inquiri ketika kegiatan berbentuk menjawab pertanyaan dan mengolah data yang telah tersedia, sepanjang siswa tetap melakukan analisis dan merumuskan kesimpulan secara mandiri. Jadi ciri utama pembelajaran inquiri adalah pada kegiatan analisis data yang diperoleh melalui kegiatan esplorasi.

b. Cirimodel pembelajaran inquiri

Model inquiri mengarah ke pembelajaran yang menggunakan materi ajar sebagai sebuah kendaraan untuk membangun kemampuan ilmiah. Model inquiri bersifat student centered dan guru bertindak sebagai fasilitator belajar. Model ini menekankan kepada how we come to know (bagaimana cara mengetahuinya); bukan kepada what we know (apa yang harus diketahui). Dalam model ini siswa terlibat dalam mengkonstruksi pengetahuan melalui keterlibatan dalam belajar.

Randy L. Bell, Lara Smetana dan Ian Binns (Haury, 2003), menegaskan bahwa pertanyaan pertama yang harus diajukan untuk menentukan bahwa

Beberapa ciri dari model pembelajaran inquiri dapat dilihat dalam rincian berikut:

- Siswa berpandangan bahwa dirinya sebagai pebelajar. Mereka menampilkan sikap semangat, berupaya untuk bekerja sama baik dengan guru maupun dengan teman, lebih percaya diri dalam belajar, menampilkan kehendak untuk memperbaharui ide dan berani mengambil risiko dan selalu skeptis.

- Siswa selalu menerima inovasi dalam belajar dan memiliki keinginan untuk selalu terlibat dalam proses esplorasi. Siswa selalu bergerak, menggunakan bahan dan materi yang tersedia, selalu berdialog dengan orang lain, serta selalu mencoba ide berbeda.

- Siswa mengajukan pertanyaan, mengusulkan penjelasan dan menggunakan teknik pengamatan kritis untuk mengumpulkan fakta, menyambungkan ide satu dengan lainnya.

- Siswa merancang rencana dan melaksanakan kegiatan belajar. Mereka merancang prosedur untuk menguji ide dengan cara menggunakan bahan-bahan, mengobservasi, mengumpulkan data, mengolah data, memutuskan mana yang penting dan mana yang tidak, melihat persamaan dan perbedaan dan menyusun kesimpulan.

- Siswa berkomunikasi menggunakan berbagai metode. Mereka menyatakan ide malalui berbagai cara termasuk jurnal, gambar, laporan, ggrafik dan lainnya. Mereka mendengarkan, berbicara dan menuliskan pespesos dan hasil belajar dengan orang tua, guru, taman dan menggunakan bahasa yang sesuai dengan disiplin ilmu yang dipelajari.

- Siswa mengkritisi cara belajar dengan cara mengenali dan mendiskusikan kekuatan dan kekurangn serta melakukan refleksi bersama guru dan teman.
c. Jenis Inquiri

Menurut Herron (2005), ada empat tingkatan inquiri. Tingkatan ini didasarkan kepada intensitas belajar yang dialami oleh siswa. Keempat tingkatan dimaksud adalah sebagai berikut:

1. Confirmation/Verification– siswa menegaskan prinsip melalui kegiatan yang telah ditentukan. Tingkatan ini dilakukan ketika prinsip yang harus dipelajari akan dilanjutkan kemudian di tingkat berikutnya.

2. Structured Inquiry– siswa melakukan penelitian menggunakan prosedur yang ditentukan guru untuk menjawab pertanyaan penelitian yang telah disediakan.

3. Guided Inquiry– siswa melakukan penelitian menggunakan prosedur yang dirancang sendiri untuk menjawab pertanyaan yang telah disediakan guru.

Penjelasan di atas dapat dinyatakan dalam tabel *What is given to the learner* sebagai berikut:

<table>
<thead>
<tr>
<th>Tingkat Inquiri</th>
<th>Pertanyaan</th>
<th>Prosedur</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

D. Aktivitas Pembelajaran

Mensimulasikan model pembelajaran problem base learning, project base learning, discovery learning dan inquiry learning.

Petunjuk:

2. Kelompok 1 : mensimulasikan model pembelajaran berbasis masalah
3. Kelompok 2 : mensimulasikan model pembelajaran berbasis projek
4. Kelompok 3 : mensimulasikan model pembelajaran discovery learning
5. Kelompok 4 : mensimulasikan model pembelajaran inquiry
E. Latihan/Kasus/Tugas

 Untuk membantu Anda memahami materi pada bagian ini, silahkan jawab pertanyaan berikut :

1. Jelaskan hal-hal apa yang harus dipertimbangkan guru dalam menerapkan model pembelajaran berbasis masalah.
2. Jelaskan dampak tidak langsung yang dapat diperoleh siswa setelah pembelajaran berbasis proyek diimplementasikan dalam proses pembelajaran.
3. Bagaimanakah perbedaan tahapan-tahapan pembelajaran berbasis masalah dengan pembelajaran berbasis proyek?
4. Jelaskan tujuan pembelajaran discovery learning!
5. Jelaskan strategi yang dipakai dalam pembelajaran discovery learning!
6. Bagaimanakah peranan guru dalam pembelajaran discovery learning?
7. Bagaimanakah ciri-ciri pembelajaran inquiry?
8. Jelaskanlah tingkatan inquiry menurut Herron!
9. Bagaimanakah perbedaan model pembelajaran inquiry dengan Problem based learning?.
10. Bagaimanakah tahapan-tahapan yang dilakukan dalam menerapkan model pembelajaran discovery learning?

F. Rangkuman

- Pembelajaran berbasis proyek / tugas adalah sebuah metode penyajian bahan pembelajaran yang diberikan oleh guru kepada peserta didik berupa seperangkat tugas yang harus dikerjakan peserta didik, baik secara individual maupun secara kelompok.
- Pembelajaran discovery learning (penemuan) merupakan salah satu model pembelajaran yang digunakan dalam pendekatan konstruktivisme. Pada pembelajaran penemuan, siswa didorong untuk terutama belajar sendiri melalui keterlibatan aktif dengan konsep-konsep dan prinsip-prinsip. Guru mendorong siswa agar mempunyai pengalaman dan melakukan eksperimen dengan memungkinkan mereka menemukan prinsip-prinsip atau konsep-konsep bagi diri mereka sendiri.
Problem based learning (Pembelajaran Berbasis Masalah) adalah suatu kegiatan pembelajaran yang berpusat pada masalah. Istilah berpusat berarti menjadi tema, unit, atau isi sebagai focus utama belajar.

Model pembelajaran Inquiri merupakan sebuah kegiatan belajar dimana siswa menjawab pertanyaan penelitian melalui metode ilmiah. Kegiatan inquiri yang paling otentik adalah ketika siswa menjawab pertanyaan yang diajukan sendiri melalui analisis data yang dikumpulkannya sendiri secara independent.

G. Umpan Balik dan Tindak Lanjut
Mohon untuk mengisi pertanyaan dibawah ini berdasarkan mataerii yang sudah Anda pelajari.

1. Apa saja yang telah Anda lakukan berkaitan dengan materi kegiatan belajar ini?
2. Bagaimana pikiran/perasaan Anda tentang materi kegiatan ini?
3. Apa saja yang Anda telah lakukan yang ada hubungannya dengan materi kegiatan ini tetapi belum ditulis di materi ini?
4. Materia pa yang ingin Anda tambahkan?
5. Bagaimana kelebihan dan kekurangan materi-materi kegiatan ini?
6. Manfaat apa saja yang Anda dapatkan dari materi kegiatan ini?
7. Berapa persen kira-kira materi kegiatan ini dapat Anda kuasai?
8. Apa yang akan Anda lakukan?

H. Evaluasi
Pilihlah jawaban yang benar menurut Anda

1. Rangkaian aktivitas pembelajaran yang menekankan kepada proses penyelesaian masalah yang dihadapi secara ilmiah disebut …
 a. Konstekstual c. Masalah
 b. Penemuan d. Projek
2. Dalam proses pembelajaran berbasis masalah, yang menjadi kata kunci adalah …
 a. Menempatkan masalah
 b. Menyelesaikan masalah
c. Penggunaan proses berpikir deduktif
d. Penggunaan proses berpikir induktif

3. Model pembelajaran yang memberikan kesempatan kepada guru untuk mengelola pembelajaran di kelas dengan melibatkan kerja proyek di sebut…
 a. Masalah
c. Investigasi
 b. Penemuan
d. Projekt

4. Salah satu langkah utama model pembelajaran berbasis proyek menurut Santyasa adalah merencanakan aktivitas. Pengalaman belajar yang terkait dengan merencanakan proyek adalah …
 a. Mencari sumber yang berkaitan dengan tema project
 b. Mengelola waktu dengan tepat
c. Melukiskan analisa rancangan proyek
d. Mendeskripsikan masalah kompleks

5. Keberhasilan penerapan pembelajaran berbasis proyek pada siswa tergantung dari …
 a. Tahap pelaksanaan
 b. Mengelompokkan siswa sesuai dengan tugas masing-masing
c. Rancangan tahap pembelajaran
d. Tahap evaluasi pembelajaran

6. Penemuan (discovery) merupakan suatu model pebelajaran yang dikembangkan berdasarkan pandangan …

7. Discovery learning adalah metode belajar yang mendorong siswa untuk mengajukan pertanyaan dan menarik kesimpulan dari prinsip-prinsip umum praktis. Pemahaman ini dikemukakan oleh …
 a. Jaroe Bruner
c. Piaget
 b. John Dewey
d. Vygotsky
8. Model pembelajaran yang menguasai konsep pengetahuan melalui upaya menjawab pertanyaan dengan proses eksplorasi, pengolahan data, dan menyusun kesimpulan adalah ...
 a. Masalah c. Discovery
 b. Inquiry d. Project

9. Siswa melakukan penelitian menggunakan prosedur yang dirancang sendiri untuk menjawab pertanyaan yang telah disediakan guru. Pernyataan ini menunjukkan kegiatan model pembelajaran inquiry pada tingkatan ...
 a. Open inquiry c. Confirmation/verification
 b. Structured inquiry d. guided inquiry

10. Yang termasuk tahap perencanaan pada model pembelajaran discovery learning menurut Bruner adalah ...
 a. Memilih materi ajar
 b. Menentukan tujuan pembelajaran
 c. Melakukan identifikasi karakteristik siswa
 d. a, b, dan c benar

I. Kunci Jawaban
 1. C
 2. A
 3. D
 4. A
 5. C
 6. C
 7. A
 8. B
 9. D
 10. A
KEGIATAN PEMBELAJARAN 3 : METODE DAN TEKNIK PEMBELAJARAN

A. Tujuan Pembelajaran

Setelah mengikuti kegiatan belajar ini, peserta diklat dapat menerapkan metode dan teknik pembelajaran sesuai dengan karakteristik paket keahlian teknik pengolahan minyak, gas, dan petrokimia melalui ceramah, diskusi kelompok, brainstorming, dan penugasan mandiri.

B. Indikator Pencapaian Kompetensi

1. Berbagai metoda dan teknik pembelajaran dijelaskan dengan benar
2. Berbagai metoda dan teknik pembelajaran diterapkan sesuai dengan tujuan pembelajaran.

C. Uraian materi

J. Metode Pembelajaran

Metode berasal dari Bahasa Yunani “Methodos” yang berarti cara atau jalan yang ditempuh. Sehubungan dengan upaya ilmiah, maka metode menyangkut masalah cara kerja untuk dapat memahami objek yang menjadi sasaran ilmu yang bersangkutan. Fungsi metode berarti sebagai alat untuk mencapai tujuan. Pengetahuan tentang metode-metode mengajar sangat diperlukan oleh para pendidik, sebab berhasil atau tidaknya siswa belajar sangat bergantung pada tepat atau tidaknya metode mengajar yang digunakan oleh guru. Jadi Metode Pembelajaran adalah ilmu yang mempelajari cara-cara untuk melakukan aktivitas yang tersistem dari sebuah lingkungan yang terdiri dari pendidik dan peserta didik untuk saling berinteraksi dalam melakukan suatu kegiatan sehingga proses belajar berjalan dengan baik dalam arti tujuan pengajaran tercapai.

Tidak ada satu metode pun yang dianggap paling baik diantara metode-metode yang lain karena setiap metode mempunyai karakteristik tertentu dengan segala kelebihan dan kelemahan masing-masing. Suatu metode mungkin baik untuk suatu tujuan tertentu, pokok bahasan maupun situasi dan kondisi tertentu,
tetapi mungkin tidak tepat untuk situasi yang lain. Demikian pula suatu metode yang dianggap baik untuk suatu pokok bahasan yang disampaikan oleh guru tertentu, kadang-kadang belum tentu berhasil dibawakan oleh guru lain. Adakalanya seorang guru perlu menggunakan beberapa metode dalam menyampaikan suatu pokok babasan tertentu. Dengan variasi beberapa metode, penyajian pengajaran menjadi lebih hidup. Misalnya pada awal pengajaran, guru memberikan suatu uraian dengan metode ceramah, kemudian menggunakan contoh-contoh melalui peragaan dan diakhiri dengan diskusi atau tanya-jawab. Di sini bukan hanya guru yang aktif berbicara, melainkan siswa pun ter dorong untuk berpartisipasi.

Faktor-faktor yang mempengaruhi pemilihan metode pembelajaran:

a. Pengajar (Pengetahuan yang dikuasai, pengalaman mengajar, dan personalitas).
b. Siswa (Tingkat kemampuan, latar belakang, umur, dan pengalaman lingkungan sosial budaya).
c. Tujuan yang akan dicapai (bila tujuan yang akan dicapai lebih dari satu maka dapat ditentukan dengan kombinsi berbagai macam metode.).
d. Materi (bahan ajar) dengan karakteristik yang berbeda.
e. Waktu (Persiapan mengajar).
f. Keadaan dan fasilitas yang tersedia di kelas atau sekolah.
g. Jumlah subyek belajar.

Alasan Menentukan Metode

Metode pembelajaran adalah bagian utuh (terpadu, integral) dari proses pendidikan pengajaran. Metode ialah cara guru menjelaskan suatu pokok bahasan (tema, pokok masalah) sebagai bagian kurikulum dalam upaya mencapai sasaran tujuan pembelajaran. Kegiatan pembelajaran dan kerjasama guru dan siswa dalam mencapai sasaran dan tujuan pembelajaran melalui cara atau metode, yang pada hakekatnya ialah jalan mencapai sasaran dan tujuan pembelajaran. Jadi, alasan atau nalar guru memilih dan menetapkan suatu metode dalam kegiatan pembelajaran adalah:
a. Metode ini sesuai dengan pokok bahasan, dalam rangka lebih menjadi mencapai sasaran dan tujuan pembelajaran.
b. Metode ini menjadi kegiatan siswa dalam belajar dan meningkatkan motivasi atau semangat belajar.

c. Metode ini memperjelas dasar, kerangka, isi dan tujuan dari pokok bahasan sehingga pemahaman siswa makin jelas.

d. Metode dipilih guru dengan azas diatas berdasarkan pertimbangan praktis, rasional dikuatkan oleh kiat dan pengalaman guru mengajar.

e. Metode yang berdaya guna, belum tentu tunggal, jadi suatu metode dapat digunakan secara kombinasi (sintesis terpadu) dan dilengkapi dengan media tertentu, bahkan multi-media. Dasar pertimbangan ialah sasaran dan tujuan pembelajaran.

➢ **Jenis-Jenis Metode Pembelajaran**

1. **Metode diskusi**, adalah metode pembelajaran yang menghadapkan siswa pada suatu permasalahan. Tujuan utama metode ini adalah untuk memecahkan suatu permasalahan, menjawab pertanyaan, menambah dan memahami pengetahuan siswa, serta untuk membuat suatu keputusan. Metode diskusi bisa dilakukan dalam beberapa jenis, yaitu diskusi kelas, diskusi kelompok kecil, simposium, diskusi panel.

2. **Metode simulasi**, yaitu cara penyajian pengalaman belajar dengan menggunakan situasi tiruan untuk memahami konsep, prinsip, atau keterampilan tertentu. Simulasi dapat digunakan sebagai metode mengajar dengan asumsi tidak semua proses pembelajaran dapat dilakukan secara langsung pada objek yang sebenarnya. Jenis-jenis simulasi adalah:
 - **sosiodrama**, yaitu metode pembelajaran bermain peran untuk memecahkan masalah-masalah yang berkaitan dengan fenomena sosial;
 - **psikodrama**, yaitu metode pembelajaran dengan bermain peran yang bertitik tolak dari permasalahan-permasalahan psikologis;
 - **role playing**, yaitu metode pembelajaran bermain peran sebagai bagian dari simulasi yang di arah kan untuk rekreasi peristiwa sejarah, peristiwa aktual, atau kejadian-kejadi an yang mungkin muncul pada masa yang akan datang (Sanjaya, 2006).
3. **Metode belajar sambil bermain**, yaitu metode belajar yang mengadopsi berbagai permainan. Baik permainan yang sudah ada, maupun yang dibuat sendiri untuk menciptakan suasana belajar yang menarik dan menyenangkan yang mengolah berbagai ranah psikologis siswa, baik kognitif, afektif, maupun psikomotor untuk mencapai tujuan pembelajaran yang telah ditetapkan.

4. **Metode Demonstrasi**

5. **Metode Proyek**
Metode proyek merupakan suatu cara memberikan kesempatan kepada siswa untuk mengamati, membaca, meneliti, menghubungkan dan mengembangkan sebanyak mungkin pengetahuan yang telah diperoleh dari berbagai mata pelajaran. Metode proyek membahas suatu tema atau unit pelajaran. Kemudian siswa diminta untuk membuat laporan dari tugas yang diberikan kepada mereka dalam bentuk makalah. Melalui metode ini diharapkan siswa dapat dilatih baik secara individual maupun kelompok untuk menelaah suatu materi pelajaran dengan wawasan yang lebih luas memantapkan pengetahuan yang telah diperoleh, meningkatkan penghargaan terhadap lingkungan, memahami dan berupaya memecahkan masalah yang dihadapi dalam kehidupan sehari-hari, serta menyalurkan minat yang memungkinkan baik dilihat dari segi waktu atau bahan pelajaran dari berbagai mata pelajaran.

6. **Metode Pembelajaran Terprogram**
Metode ini menggunakan bahan pengajaran yang disiapkan secara khusus. Isi pengajaran di dalamnya harus dipecah menjadi langkah-langkah kecil, diurut secara ceramat, diarahkan untuk mengurangi kesalahan, dan
diikuti dengan umpan balik segera. Siswa mendapat kebebasan untuk belajar menurut kecepatan masing-masing.

7. Metode Simposium

8. Metode Latihan bersama Teman

Metode ini memanfaatkan siswa yang telah lulus atau telah berhasil untuk melatih temannya dan ia bertindak sebagai pelatih dan pembimbing (asisten guru). Metode yang dipakai terserah kepada siswa pembimbing tersebut.

9. Metode Eksperimen

Metode eksperimen merupakan salah satu cara mengajar dimana seorang siswa diajak untuk beruji coba atau mengadakan pengamatan kemudian hasil pengamatan itu disampaikan dikelas dan di evaluasi oleh guru.

10. Metode Karya Wisata

Metode karya wisata merupakan teknik mengajar yang dilaksanakan dengan mengajak siswa kesuatu tempat atau obyek tertentu diluar sekolah untuk mempelajari atau menyelidiki sesuatu.
11. Metode Ceramah
Metode ceramah ialah cara mengajar yang paling tradisional dan telah lama dijalankan dalam sejarah pendidikan, yaitu dimana seorang guru menularkan pengetahuannya kepada siswa secara lisan atau ceramah.
Metode ceramah adalah : memberikan uraian atau penjelasan kepada sejumlah murid pada waktu dan tempat tertentu. Dengan kata lain teknik ini adalah sebuah teknik mengajar dengan menyampaikan informasi dan pengetahuan secara lisan kepada sejumlah siswa yang pada umumnya mengikuti secara pasif. Teknik ini disebut juga dengan teknik kuliah atau teknik pidato.

➢ Teknik Pembelajaran

Istilah teknik dalam pembelajaran didefinisikan dengan cara-cara dan alat yang digunakan oleh guru dalam rangka mencapai suatu tujuan, langsung dalam pelaksanaan pelajaran pada waktu itu. Menurut Radhi al-Hafidh, teknik dalam pembelajaran, bersifat implementasional saat proses belajar berlangsung untuk mencapai sasarannya.

➢ Macam-macam Teknik Pembelajaran
Terdapat beberapa pembagian jenis teknik pembelajaran, diantaranya:

b. Menurut shintiaminandar, jenis teknik pembelajaran terbagi dua, yaitu:
 Teknik Pembelajaran Teknik Umum (Teknik Umum Mengajar) adalah cara-cara yang dapat digunakan untuk semua bidang studi; dan Teknik Khusus (Teknik Khusus Pengajaran Matapelajaran Tertentu) adalah cara mengajarkan (menyajikan atau memantapkan) bahan-bahan pelajaran bidang studi tertentu.

 Dengan mengetahui pengertian dan jenis teknik pembelajaran di atas, diharapkan dapat membantu pengajar dalam memilih teknik pembelajaran yang tepat ketika hendak menggunakan suatu metode pembelajaran tertentu terhadap keadaan spesifik yang dihadapi selama proses pembelajaran.

 Teknik pembelajaran merupakan cara guru menyampaikan bahan ajar yang telah disusun (dalam metode), berdasarkan pendekatan yang dianut. Teknik yang digunakan oleh guru bergantung pada kemampuan guru itu mencari akal atau siasat agar proses belajar mengajar dapat berjalan lancar dan berhasil dengan baik. Dalam menentukan teknik pembelajaran ini, guru perlu mempertimbangkan situasi kelas, lingkungan, kondisi siswa, sifat-sifat siswa, dan kondisi-kondisi yang lain. Dengan demikian, teknik pembelajaran yang digunakan oleh guru dapat bervariasi sekali. Untuk metode yang sama dapat digunakan teknik pembelajaran yang berbeda-beda, bergantung pada berbagai faktor tersebut.

 Dari uraian di atas dapat dikatakan bahwa teknik pembelajaran adalah siasat yang dilakukan oleh guru dalam pelaksanaan kegiatan belajar mengajar untuk memperoleh hasil yang optimal. Teknik pembelajaran ditentukan berdasarkan metode yang digunakan, dan metode disusun berdasarkan pendekatan yang dianut. Dengan kata lain, pendekatan menjadi dasar penentuan teknik pembelajaran. Dari suatu pendekatan dapat diterapkan teknik pembelajaran yang berbeda-beda pula.
D. Aktivitas Pembelajaran

- Diskusi Kelompok

Anda di minta untuk berkelompok anggotanya 3-4 orang. Setiap anggota dalam kelompok, diminta mengemukakan ide sebanyak-banyaknya mengenai instilah-istilah berikut : pendekatan pembelajaran, strategi pembelajaran, model pembelajaran, metode pembelajaran, dan Teknik Pembelajaran, disertai dengan contoh kegiatan yang sistematis, sehingga akan terlihat perbedaan diantara istilah-istilah tersebut.

E. Latihan/Kasus/Tugas

Untuk menyempurnakan pemahaman Anda pada kegiatan belajar ini, maka jawablah pertanyaan berikut ini.

1. Jelaskan perbedaan metode pembelajaran dengan teknik pembelajaran!
2. Jelaskan jenis –jenis metode dan teknik pembelajaran!

F. Rangkuman

- Metode pembelajaran ialah rencana pembelajaran, yang mencakup pemilihan, penentuan, dan penyusunan secara sistematis bahan yang akan diajarkan, serta kemungkinan pengadaan remedi dan bagaimana pengembangannya. Pemilihan, penentuan, dan penyusunan bahan ajar secara sistematis dimaksudkan agar bahan ajar tersebut mudah diserap dan dikuasai oleh siswa. Semuanya itu didasarkan pada pendekatan yang dianut. Melihat hal itu, jelas bahwa suatu metode ditentukan berdasarkan pendekatan yang dianut; dengan kata lain, pendekatan merupakan dasar penentu metode yang digunakan.

- Teknik pembelajaran merupakan cara guru menyampaikan bahan ajar yang telah disusun (dalam metode), berdasarkan pendekatan yang dianut. Teknik yang digunakan oleh guru bergantung pada kemampuan guru itu mencari akal atau siasat agar proses belajar mengajar dapat berjalan lancar dan berhasil dengan baik. Dalam menentukan teknik pembelajaran ini, guru perlu mempertimbangkan situasi kelas, lingkungan, kondisi siswa, sifat-sifat siswa, dan kondisi-kondisi yang lain. Dengan demikian, teknik pembelajaran yang digunakan oleh guru dapat bervariasi sekali. Untuk
metode yang samadapat digunakan teknik pembelajaran yang berbeda-beda, bergantung pada berbagai faktor tersebut.

A. Umpan Balik dan Tindak Lanjut
Mohon untuk merenungkan kelebihan dan kekurangan materi kegiatan belajar 3 ini. Jika ada kekurangannya, bagaimana Anda mengatasi kekurangannya? Bagaimana pemandangan Anda terhadap materi ini? Jika sudah menguasai, bagaimana pemanfaatan materi ini untuk meningkatkan kompetensi pedagogik Anda? Jika belum menguasai, bagaimana upaya Anda selanjutnya?

B. Evaluasi
1. Ilmu yang mempelajari cara-cara untuk melakukan aktivitas yang tersistem dari sebuah lingkungan yang terdiri dari pendidik dan peserta didik untuk saling berinteraksi dalam melakukan suatu kegiatan untuk mencapai tujuan di sebut …
 a. Metode pembelajaran
 b. Pendekatan pembelajaran
 c. Strategi Pembelajaran
 d. Teknik Pembelajaran
2. Faktor-faktor yang empengaruhi pemilihan metode pembelajaran adalah …
 a. Pengajar, siswa, materi, tujuan yang akan di capai
 b. Siswa, pengajar, kurikulum dan materi
 c. Siswa, materi, kurikulum, dan tujuan pembelaajran
 d. Kurikulum, siswa, tujuan yang akan dicapai.
3. Metode pembelajaran yang bertujuan untuk memecahkan suatu permasalahan, menjawab pertanyaan, menambah dan emahai pengetahuan siswa, serta untuk membuat suatu keputusan di sebut …
 a. Simulasi c. Ceramah
 b. Role Play d. Diskusi
4. Cara penyajian pengalaman belajar dengan menggunakan situasi tiruan untuk memahami konsep, prinsip atau keterampilan tertentu merupakan metode …
 a. Ceramah
 b. Simulasi
 c. Role Play
 d. Belajar sambil Bermain

5. Metode demonstrasi dapat disatukan dengan metode …
 a. Role Play
 b. Simulasi
 c. Eksperimen
 d. Proyek

6. Suatu cara yang dilakukan guru dalam menerapkan metode pembelajaran tertentu di sebut …
 a. Teknik
 b. Taktik
 c. Model
 d. Strategi

7. Menurut Femilla, jenis –jenis teknik pebelajaran meliputi …
 a. Teknik Umum dan teknik syarahan
 b. Teknis Khusus dan teknik perbincangan
 c. Teknik Umum dan Teknik Khusus
 d. Teknik syarahan dan Teknik Perbincangan

8. Teknik Pembelajaran ditentukan berdasarkan …

9. Metode Pembelajaran di susun berdasarkan …
 a. Model
 b. Pendekatan yang dianut
 c. Strategi
 d. Teknik

10. Cara mengajar yang paling tradisional, dan telah lama dijalankan dalam sejarah pendidikan, dimana seorang guru menularkan pengetahuannya kepada siswa secara lisan adalah metode …
 a. Karya wisata
 b. Demonstrasi
 c. Ceramah
 d. Project

C. Kunci Jawaban

1. A
2. A
3. D
4. B
5. C
6. A
7. D
8. C
9. B
10. C
BAB III
KOMPETENSI PROFESIONAL

A. Tujuan
1. Peserta diklat diharapkan bisa dapat mengetahui macam macam peralatan sensor yang digunakan (Thermocouple, Depiser, Tube bordon, Displasher, floater) dalam proses pengolahan migas
2. Peserta diklat diharapkan bisa dapat Mengidentifikasi tentang macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur
3. Peserta diklat diharapkan bisa dapat mengetahui hubungan macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur.
4. Peserta diklat diharapkan bisa memahami macam-macam turbin flow meter (Mechanical turbin flow meter dan Electric turbin flow meter)
5. Peserta diklat diharapkan bisa memahami dalam melakukan perhitungan rugi tekanan (pressure drop) kecil

B. Indikator Pencapaian Materi
1. Mengamati macam macam peralatan sensor yang digunakan (Thermocouple, Depiser, Tube bordon, Displasher, floater)
2. Mengidentifikasi tentang macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur
3. Menentukan hubungan macam - macam peralatan sensor yang digunakan untuk mengambil besaran yang diukur.
4. Menentukan macam-macam turbin flow meter (Mechanical turbin flow meter dan Electric turbin flow meter)
5. Melaksanakan perhitungan rugi tekanan (pressure drop) kecil
C. Uraian Materi

1. Sensor Thermocouple

1.1. Teori Thermocouple

Pada tahun 1821 ahli fisika Germany, Estonian Thomas Johann Seebeck menemukan bahwa suatu kondutor apapun (misalnya metal) akan menghasilkan suatu tegangan (voltage) ketika diberikan gradien thermal. Peristiwa ini dikenal sebagai efek Seebeck atau efek termoelektrik. Thermocouple adalah suatu sensor temperatur termoelektris yang terdiri dari dua kawat logam yang berlainan (misalnya chromel dan constantan) dengan penggabungannya pada probe tip (measurement junction) dan reference junction (temperature yang diketahui).

Gambar 3.1. Typical Rangkaian Thermocouple
Komponen konduktor pada thermocouple selain dapat di dirangkai secara seri juga dapat dirangkai secara paralel sesuai dengan kebutuhan yang ada. Jika dirangkai secara seri, maka nilai tegangan total adalah jumlah dari keseluruhan tegangan yang dibangkitkan oleh masing-masing pasangan konduktor. Sedangkan jika disusun secara paralel, dan dengan syarat tiap-tiap pasangan konduktor memiliki nilai tahanan yang sama, maka besar tegangan total yang dibangkitkan adalah nilai rata-rata dari tegangan yang dibangkitkan oleh masing-masing konduktor seperti yang ditunjukkan pada gambar 3.2. Kemampuan thermocouple untuk dirangkai secara seri maupun paralel ini bermanfaat pada saat dibutuhkannya pengukuran temperatur dengan rentan yang kecil serta ketelitian yang tinggi.

![Gambar 3.2. Grafik Tegangan versus suhu pada beberapa Kombinasi Logam Konduktor](image)

Setiap kombinasi konduktor yang digunakan pada thermocouple menentukan rentan temperatur yang dapat dibaca oleh thermocouple tersebut. Penentuan material konduktor yang cocok pada rentan temperatur kerja tertentu sangat dipengaruhi oleh ketahanan material tersebut terhadap proses oksidasi yang terjadi pada temperatur kerja yang diinginkan. Sedangkan keawetannya
dipengaruhi oleh ukuran kawat yang digunakan, jenis osilator yang digunakan, serta kondisi lingkungan kerjanya.

Beberapa jenis-jenis sambungan thermocouple yang umum digunakan ditunjukkan pada gambar 3.3.

Gambar 3.3. Typical Sambungan Thermocouple

Thermocouple adalah sensor suhu, thermocouple sering digunakan untuk industri pengolahan minyak atau baja. Thermocouple adalah transduser suhu aktif yang tersusun dari dua buah logam berbeda dengan titik pembacaan pada pertemuan kedua logam dan titik yang lain sebagai outputnya. Thermocouple merupakan salah satu sensor yang paling umum digunakan untuk mengukur suhu karena relatif murah namun akurat. Thermocouple dapat beroperasi pada suhu panas maupun dingin. Konstruksi Thermocouple dapat dilihat pada gambar 3.4.
Gambar 3.4. Konstruksi thermocouple

Pada kondisi level noise yang tinggi, Sensor suhu termokopel memiliki nilai output yang kecil, agar nilai output tersebut dapat dibaca Thermocouple memerlukan pengkondisi sinyal.

1.3. Tipe -Tipe Termokopel

Tersedia beberapa jenis termokopel, tergantung aplikasi penggunaannya, yaitu :

 a. Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))
 Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu −200 °C hingga +1200 °C.

 b. Tipe E (Chromel / Constantan (Cu-Ni alloy))
 Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah, tipe E adalah tipe non magnetik.

 c. Tipe J (Iron / Constantan)
 Rentangnya terbatas (−40 hingga +750 °C) membuatnya kurang populer dibanding tipe K
d. Tipe J memiliki sensitivitas sekitar ~52 µV/°C

e. Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))
Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900°C, sedikit di bawah tipe K. Tipe N merupakan perbaikan tipe K

f. Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).

- Type B (Platinum-Rhodium/Pt-Rh) dapat mengukur suhu di atas 1800 °C. Tipe B memberi output yang sama pada suhu 0°C hingga 42°C sehingga tidak dapat dipakai di bawah suhu 50°C.
- Type R (Platinum /Platinum with 7% Rhodium) dapat mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum.
- Type S (Platinum /Platinum with 10% Rhodium) dapat mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum. Karena stabilitasnya yang tinggi Tipe S digunakan untuk standar pengukuran titik leleh emas (1064.43 °C).

g. Type T (Copper / Constantan)
Cocok untuk pengukuran antara ~200 hingga 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari konstantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C
1.4. Prinsip Kerja Termokopel (Thermocouple)

Prinsip kerja Termokopel cukup mudah dan sederhana. Pada dasarnya Termokopel hanya terdiri dari dua kawat logam konduktor yang berbeda jenis dan digabungkan ujungnya. Satu jenis logam konduktor yang terdapat pada Termokopel akan berfungsi sebagai referensi dengan suhu konstan (tetap) sedangkan yang satunya lagi sebagai logam konduktor yang mendeteksi suhu panas. Untuk lebih jelas mengenai prinsip kerja Termokopel ditunjukkan pada gambar 3.5.

Berdasarkan Gambar 3.5, ketika kedua persimpangan atau Junction memiliki suhu yang sama, maka beda potensial atau tegangan listrik yang melalui dua persimpangan tersebut adalah “NOL” atau $V_1 = V_2$. Akan tetapi, ketika persimpangan yang terhubung dalam rangkaian diberikan suhu panas atau dihubungkan ke obyek pengukuran, maka akan terjadi perbedaan suhu diantara dua persimpangan tersebut yang kemudian menghasilkan tegangan listrik yang nilainya sebanding dengan suhu panas yang diterimanya atau $V_1 - V_2$. Tegangan Listrik yang ditimbulkan ini pada umumnya sekitar 1 μV – 70μV pada tiap derajat Celcius. Tegangan tersebut kemudian dikonversikan sesuai dengan Tabel referensi yang telah ditetapkan sehingga menghasilkan pengukuran yang dapat dimengerti.
2. Sensor Bourdon Tube

Prinsip Operasi Sensor Bourdon Tube

Bourdon Tube adalah alat ukur tekanan nonliquid. Alat ukur ini secara luas digunakan di dalam industri proses untuk mengukur tekanan statis pada beberapa aplikasi. Bentuk dari bourdon tube terdiri dari element (C-type, helical dan spiral) dan dihubungkan secara mekanikal dengan jarum indicator. Prinsip operasinya yaitu tekanan dipandu ke dalam tabung, perbedaan tekanan di dalam dan di luar tabung bourdon akan menyebabkan perubahan bentuk penampangnya.

Perubahan bentuk penampang akan diikuti perubahan bentuk arah panjang tabung, dimana perubahan panjang tabung akan dikonversikan menjadi gerakan jarum penunjuk pada skala. Analisa teoritis tentang perubahan bentuk tabung bourdon sebagai fungsi perbedaan tekanan di luar dan di dalam tabung bourdon jarang dilakukan. Perubahan bentuk tabung bourdon diperoleh dari data eksperimental. Ada tiga tipe tabung bourdon, yaitu:

a. C-type, Spiral dan Helical
Perbedaan masing-masing tipe terletak pada harga tekanan yang ingin diukur.

b. C-type Bourdon Tube
Digunakan untuk range 15 ~ 100.000 psig dengan range akurasi (± 0.1 ~ ± 5) % span.

c. Spiral Bourdon Tube
Digunakan secara umum pada range tekanan menengah (medium pressure), tetapi untuk tugas berat juga tersedia dalam range hingga 100.000 psig. Range akurasinya sekitar ± 0.5 % dari span.
d. **Helical Bourdon Tube**

Digunakan pada range dari 100 ~ 80,000 psig dengan akurasi sekitar ± ½ ~ ± 1 % dari span.

3. Pengukuran dan Pengontrolan Peralatan Sensor

Pengukuran yang teliti dan sistem kontrol yang tepat dalam industri proses, dapat menghasilkan hargavariable fisika dan kimia dari sistem yang sesuai dengan harga perancangannya. Hal ini akan dapat menghemat biaya operasi serta perbaikan hasil produksi. Sebagai contoh, harga temperature yang tepat dalam pemprosesan minyak mentah (crude oil) akan menghasilkan produk terbaiknya. Jika harga temperature ini digunakan untuk mengontrol aliran atau jumlah bahan bakar yang digunakan didalam proses pemanasan, maka tidak akan terjadi “overheating” pada proses tersebut sehingga jumlah bahan bakar dapat dihemat.

Tujuan dari penerapan sistem instrumentasi dan kontrol di dalam industri proses adalah berkaitan dengan segi ekonomis. Oleh karena itu instrumentasi dan system kontrol yang diterapkan diharapkan dapat menghasilkan:

1. Kualitas produk yang lebih baik dalam waktu pemrosesan yang lebih singkat.
2. Biaya produksi yang lebih murah, oleh karena:
 · Penghematan bahan mentah dan bahan bakar.
 · Peningkatan efisiensi waktu mesin dan pekerja.
 · Pengurangan produksi yang rusak (off spec.).
3. Peningkatan keselamatan personil dan peralatan.
4. Pengurangan polusi lingkungan dari bahan limbah hasil proses.

Berdasarkan ini, maka beberapa hal yang termasuk dalam sistem instrumentasi dan kontrol meliputi:

1. Karakteristik proses.
2. Sistem pengukuran.
3. Pemrosesan data otomatis.
4. Sistem pengontrolan dengan elemen kontrol akhir (final control element).

Keempat butir sistem instrumentasi dan kontrol tersebut di atas sudah dilakukan sejak awal oleh setiap orang yang ingin memperoleh harga tertentu dari suatu besaran fisika. Gambar 2.1 menunjukkan bagaimana seseorang ingin memperoleh temperature air yang sesuai dengan keinginanya, dimana semua sistem dioperasikan oleh manusia secara manual.

1. Sebagai proses adalah pemanasan air dengan sumber kalor dari steam.
2. Sebagai alat ukur adalah tangan kanan pemakai.
3. Sebagai prosesor adalah otak pemakai, yang akan mengevaluasi apakah temperature air sudah sesuai dengan keperluannya.
4. Sebagai sistem control dan final control elemen adalah tangan kiri pemakai dan kran steam.

3.1. Perkembangan Teknologi Instrumentasi (Peralatan sensor)

Perkembangan instrumentasi dan sistem kontrol yang dimulai tahun 1930 hingga saat ini, dipengaruhi dua factor, yaitu ; kebutuhan pemakai dan kemajuan teknologi. Kebutuhan pemakai dalam menangani proses yang semakin rumit dan besar ini akan menuntut peningkatan teknologi sistem kontrol. Dalam mengatasi hal ini maka pemilik pabrik (owner) berusaha lebih meningkatkan sistem otomatisasi pada pabrik untuk tujuan optimasi pengoperasian pabrik. Sesuai dengan kebutuhan pemakai ini, maka para pemasok (vendor) peralatan instrumentasi dan kontrolmenawarkan sistem yang terintegrasi antara pemantauan, pengontrolan, serta sistem peyimpanan dan pengambilan data.

Kemajuan teknologi dalam bidang elektronika juga merupakan faktor yang menentukan cepatnya perkembangan instrumentasi dan sistem kontrol. Pada masa sebelum tahun 70-an, instrumentasi pneumatik yang menggunakan teknologi flapper-nozzle, tubing tembaga dengan angin
instrument merupakan instrumentasi yang tergolong teknologi tinggi pada saat itu. Perkembangan transistor dan rangkaian analog yang terintegrasi pada awal tahun 70-an menghasilkan kemampuan dan meningkatkan kehandalan instrumentasi dan sistem control elektronik. Kemajuan ini mengakibatkan instrumentasi dan sistem kontrol dengan teknologi elektronik analog dapat menggantikan teknologi pneumatik.

Perkembangan teknologi komputer digital yang didukung oleh perkembangan yang pesat di bidang mikro-elektronika (microprocessor) di pertengahan tahun 70-an telah memberikan dampak yang positif dan nyata pada instrumentasi dan sistem control pada industri proses, termasuk pula di industri pengolahan minyak dan gas bumi serta industri kimia. Perkembangan teknologi ini mengakibatkan instrumentasi dan sistem kontrol berbasis teknologi digital dapat menggantikan teknologi elektronik analog pada banyak penerapannya.

Sejalan dengan ditemukannya komponen elektronik yang berkemampuan tinggi sebagai perangkat keras (hardware) dan diikuti pula dengan perkemangan perangkat lunak (software) yang demikian majunya, telah melahirkan konsep-konsep baru di dalam dunia instrumentasi dan sistem kontrol. Sistem baru ini berkembang sangat pesat dan dikenal sebagai teknologi Programmable Logic Controller (PLC) dan Distributed Control System (DCS).

Pada awal tahun 80-an, perkembangan teknologi microprocessor sangat cepat dan diikuti dengan perkembangan perangkat lunak serta operating system UNIX yang semakin maju, maka diikuti juga dengan perkembangan teknologi DCS berbasis operating system UNIX.

Pada awal tahun 90-an setelah diluncurkan operating system berbasis Windows dan didukung dengan perkembangan teknologi microprocessor dengan kemampuan lebih besar, maka teknologi DCS memasuki babak baru yang luar biasa dalam dunia instrumentasi dan sistem kontrol yaitu DCS berbasis Windows. Operator console yang sebelumnya menggunakan special computer/monitor digantikan dengan Personal Computer (PC).
Selanjutnya pada akhir tahun 90-an, teknologi instrumentasi dan sistem control berbasis DCS memasuki era baru yaitu Open Network Technology (teknologi dimana sub-system DCS dapat terhubung secara langsung dengan jaringan DCS tanpa menggunakan Gateway sebagai network converter) dengan menggunakan Ethernet (TCP/IP) sehingga memudahkan mengimplementasikan aplikasi seperti ; PIMS (Plant Information Management System), KMS (Knowledge Management System), Enhanced Regulatory Control (ERC), Advanced Process Control (APC), Plant Optimization dan lain-lain.

3.2. Sistem kontrol Berbasis DCS

DCS adalah suatu jaringan computer control yang dikembangkan untuk tujuan monitoring dan pengontrolan proses variable pada industri proses. Sistem ini dikembangkan melalui penerapan teknologi microcomputer, software dan network.

Sistem hardware dan software mampu menerima sinyal input berupa sinyal analog, digital maupun pulsa dari peralatan instrument di lapangan. Kemudian melalui fungsi feedback control sesuai algorithm control (P, PI, PID, dll) maupun sequence program yang telah ditentukan, sistem akan menghasilkan sinyal output analog maupun digital yang selanjutnya digunakan untuk mengendalikan final control element (control valve) maupun untuk tujuan monitoring, reporting, dan alarm.

Perlu diperhatikan disini bahwa fungsi kontrol tidak dilakukan secara terpusat, melainkan ditempatkan di dalam satellite room (out station) yang terdistribusi di lapangan (field). Setiap unit proses biasanya memiliki sebuah out station, di dalam out station tersebut terdapat peralatan controller (control station & monitoring station). Oleh karena peralatan tersebut berfungsi sebagai fasilitas untuk koneksi dengan peralatan instrumen lapangan (instrument field devices), maka peralatan tersebut sering juga disebut sebagai process connection device.
Gambar 3.7. Distributed Control System (DCS)

Architecture DCS dapat dilihat pada gambar 3.7 yang secara garis besar terdiri dari tiga bagian utama yaitu ; Man-Machine Interface, Process Connection Device dan Data Communication Facilities. Man-Machine Interface (MMI) atau operator station berfungsi sebagai pusat monitoring dan pengendalian proses di lapangan, dan ditempatkan secara terpusat di dalam ruang kendali (control room). Fungsi utama operator station adalah sebagai layar minitor untuk menampilkan, mengoperasikan, serta me-record data-data yang diperoleh dari controller yang ditempatkan di out station.

4. Measuring Devices (Flow, Level, Pressure dan Temperature)

Alat ukur (measuring device) adalah alat yang berada di lapangan (field) untuk mengukur variable proses seperti flow, pressure, level dan temperature. Pada industri proses output data dari alat ukur akan ditransmisikan ke ruangan control (control room) untuk diproses lebih lanjut dalam kaitannya dengan sistem kontrol.
Pemilihan jenis alat ukur yang sesuai dan terbaik untuk mengukur suatu variable proses, sering kali sukar dilaksanakan, bahkan seorang engineer yang berpengalaman dan sudah mempunyai metodapemilihan akan mengalami demikian. Pemilihan dapat lebih sederhana bilamana semua kondisi operasi (service condition) yang dipersyaratkan diketahui. Beberapa pengukuran memerlukan lebih informasi dibanding dengan yang lain. Sebagai contoh, beberapa kondisi operasi dan stream characteristic harus diketahui untuk aplikasi pengukuran aliran (flow) dibanding untuk peralatan pengukuran tekanan (pressure). Oleh karena itu sangat penting untuk mendaftar semua informasi yang berhubungan dengan pemilihan alat ukur yang dimaksud.

5. Alat Ukur Aliran Fluida (Flow Measurement)

1. Ukuran pipa dimana laju aliran diukur (Line Size)
2. Daerah laju aliran (Range of flow rates); maximum, normal dan minimum
3. Karakteristik fluida (fluid properties):
 - Liquid, gas, slurry, dll.
 - Pressure
 - Temperature
 - Viscosity
 - Specific gravity at standard and flowing conditions
 - Compressibility
 - Molecular weight (for gases and vapors)
 - Steam quality (for steam)
4. Pengaruh korosif (untuk membantu didalam pemilihan material)

5. Apakah aliran yang diukur adalah aliran yang stabil atau aliran fluktuasi.

6. Magnetic Meters

1. Prinsip Operasi
Magnetic flowmeter (mag flowmeter) adalah suatu volumetric flow meter yang tidak mempunyai bagian yang bergerak (moving part) dan ideal untuk aplikasi air limbah (wastewater) atau cairan kotor yang konduktif listrik. Secara umum magnetic flowmertidak berfungsi pada fluida hidrokarbondan air suling (distilled water), namun ideal untuk mengukur aliran fluida seperti slurry dan material korosif. Flowmeter jenis ini sangat ideal untuk aplikasi dimana disyaratkan pressure drop rendah dan maintenance yang rendah. Prinsip kerja flowmeter jenis ini didasarkan pada hukum induksi elektromagnetik (Faraday’s Law), yaitu bila suatu fluida konduktif elektrik melewati pipa transducer, maka fluida akan bekerja sebagai konduktor yang bergerak memotong medan magnet yang dibangkitkan oleh kumparan magnetic dari transducer, sehingga timbul tengangan listrik induksi. Hubungan ini dapat dinyatakan sebagai:

$$e = B \cdot l \cdot v$$ \hspace{1cm} (3.21)

Dimana:
- e = tegangan listrik induksi
- B = rapat fluksi medan magnet
- l = panjang konduktor (diameter dalam pipa)
- v = kecepatan konduktor (laju aliran)
Gambar 3.8. Prinsip operasi dari model magnetic flowmeter

Gambar di atas, memperlihatkan dua bentuk mag flowmeter yaitu :

- Inline model ; menempatkan electric coil di sekeliling pipa dan disediakan sepasang electroda berseberangan pada dinding pipa.
• Insertion model; menyisipkan electric coil ke dalam pipa yang akan diukur flow-nya dan disediakan sepasang electroda di ujung dari flowmeter.

3. Kelebihan dan Kekurangan

Kelebihan

- Pressure drop minimum, oleh karena penghalang yang minimum pada lintasan flow.
- Biaya maintenance rendah sebab tidak ada moving parts.
- Linearitas yang tinggi.
- Dapat digunakan untuk mengukur fluida yang korosif dan slurry.
- Pengukuran tidak dipengaruhi oleh viscosity, density, temperature dan pressure.
- Dapat mengukur aliran fluida jenis turbulent atau laminar.

Kekurangan

- Dalam banyak kasus, persyaratan electrical conductivity dari fluida yang ditetapkan pabrik (0.1 – 20 micromhos).
- Zero drifting pada kondisi tidak ada flow atau low flow È problem ini pada disain baru ditingkatkan dengan memotong (cut-off) low flow.

7. Turbine Meters

1. Prinsip Operasi

Teori dasar pada turbine meters adalah relatif sederhana, yaitu aliran fluida melalui meter berbenturan dengan turbine blade yang bebas berputar pada suatu poros sepanjang garis pusat dari turbin housing. Kecepatan sudut (angular velocity) dari turbine rotor adalah berbanding lurus dengan laju aliran (fluid velocity) yang melalui turbine. Keluaran dari meter diukur oleh electrical pickup yang dipasang pada meter body. Frekwensi keluaran dari electric pickup adalah sebanding dengan laju aliran (flow rate). Accuracy dan rangeability dari alat ukur turbine meter tersebut sangat baik. Rangeability bervariasi dari 100: 1 s/d 200: 1. Accuracy sekitar : ± ¼ s/d ±½ %.
Gambar 3.9. Prinsip Operasi Turbine Meters

\[Q = VA = \frac{\omega (r)^2 A^2}{rA \tan \beta - 0.037 Re^{-0.2} n (R + a) S \sin \beta} \]

(3.22)
8. Pengukuran Level Fluida (Level Measurements)
Pemilihan metoda pengukuran level yang sesuai aplikasi, biasanya lebih sulit dibanding dengan keempat proses variabel utama kecuali flow. Seperti pada pengukuran flow, kondisi dari media yang diukur kadang-kadang mempunyai banyak efek yang kurang baik pada alat ukur, sehingga data
kondisi operasi harus diketahui lebih banyak didalam pemilihan alat ukur level. Kondisi operasi yang harus diketahui adalah:

1. Level range
2. Fluida characteristic
 - Temperature
 - Pressure
 - Specific gravity
 - Apakah fluida bersih atau kotor, mengandung vapors atau solids.
3. Efek korosif.
4. Apakah fluida mempunyai kecenderungan efek “coat” atau menempel pada dinding vessel atau measuring device.
5. Apakah fluida tersebut turbulent disekitar area pengukuran. Secara normal tidak ada kesulitan berarti didalam mengukur level fluida bersih dan nonviscous, namun untuk material “slurry” atau material dengan viscous yang berat dan solid, bagaimanapun banyak menimbulkan masalah.

Pengelompokan (Categorization)
Beberapa jenis metode pengukuran level atau tinggi permukaan untuk fluida yang sering digunakan di industri proses, dapat dikelompokkan sebagai berikut:

1. Displacement
2. Differential pressure
3. Capacitance
4. Ultrasonic
5. Radar
6. Radiation

9. Pengukuran Pressure (Pressure Measurements)
Tekanan terjadi karena adanya gaya yang bekerja terhadap suatu bidang luasan. Karena itu tekanan dinyatakan sebagai Gaya yang bekerja pada suatu Satuan Luas. Pada bagian ini akan ditinjau beberapa prinsip pengukuran tekanan yang biasa digunakan di industri proses. Alat ukur
tekanan disebut sebagai Manometer. Berbagai macam nama dan tipe manometer yang terdapat di industri proses, bergantung pada prinsip kerja, jenis fluida yang diukur serta kebutuhan penggunaannya. Pada umumnya tekanan fluida yang diukur di industri proses adalah cairan dan gas. Sesuai dengan definisi dari tekanan di atas, terdapat 4 terminologi penting yang biasa digunakan tentang ukuran atau pengukuran tekanan, yaitu:

a. Absolute Pressure (tekanan absolut)
 Gaya yang bekerja pada satuan luas, tekanan ini dinyatakan dan diukur terhadap tekanan NOL.

b. Gauge Pressure (tekanan relatif)
 Tekanan yang dinyatakan dan diukur relatif terhadap tekanan atmosfer. Jadi, tekanan relatif adalah selisih antara tekanan absolut dengan tekanan atmosfer (1 atmosfer = 760 mmHg= 14.7 psig)

c. Vacum Pressure (tekanan hampa)
 Tekanan yang lebih rendah dari tekanan atmosfer

d. Differential Pressure (tekanan differential)
 Tekanan yang diukur terhadap tekanan yang lain.

10. Kerugian Tekanan Dan Kerugian Aliran
Karena pada tiap-tiap aliran timbul kerugian pada persamaan Bernoulli yang telah disebutkan masih harus ditambahkan satu faktor lagi (Gambar 3.77). Untuk aliran dengan adanya rugi berlaku:

\[p_1 + \frac{\alpha \cdot p \cdot v_1^2}{2} = p_2 + \frac{\alpha \cdot p \cdot v_2^2}{2} + \sum \Delta \rho \]

Persamaan ini mengungkapkan bahwa level energi dalam penampang 1 sama dengan level energi dalam penampang 2 ditambah dengan hasil jumlah kerugian antara kedua penampang.

Dalam rumus ini:

\[v \] = kecepatan aliran rata-rata (m/s)
\(\alpha = \) koefisien; \(\alpha = 2 \) untuk cairan laminar; \(\alpha = 1 \) untuk aliran turbulen.

\(\rho = \) massa jenis dalam kg/m\(^3\)

\(p = \) tekanan udara dalam N/m\(^2\)

Perumusan dengan cara lain, dapat juga dikatakan bahwa perubahan tekanan total (indeks 1 dan 2) – jadi hasil jumlah tekanan statik, tekanan kinetik dan tekanan potensial – antara penampang-penampang ini. Pengaruh energi kinetik (tekanan dinamik \(P = \frac{1}{2} \rho v^2 \)) adalah besar terutama pada perubahan tiba-tiba diameter pipa. Dalam saluran-saluran lurus pengaruh perbedaan ketinggian dan dengan demikian berarti tekanan potensial juga biasanya dapat diabaikan.

Hasil jumlah kerugian tersendiri terdiri dari:

\[
\sum \Delta \rho = \sum \lambda \cdot \frac{1}{d_m} \cdot \frac{1}{2} \rho v^2 \sum \xi \cdot \frac{1}{2} \rho v^2
\]

(3.34)

\(\lambda = \) koefisien gesekan pipa (juga disebut koefisien kerugian dalam saluran).

\(d_m = \) diameter dalam rata-rata dari saluran (m)

\(\xi = \) koefisien hambatan (dahulu juga dinamakan koefisien kerugian) yang menentukan kerugian setempat dalam berbagai potongan cetak (pipa lengkung, sikusiku, pipa T, keran, katup, sorong-sorong atau pada tempat dimana diameter pipa aliran menjadi lebih sempit atau lebih besar.

Pada aliran laminer terhadap koefisien ini. Masih diperhitungkan faktor koreksi \(b \) atau diberikan dalam grafik-grafik. Faktor koreksi ini memperhatikan kenaikan \(\lambda \) (koefisien gesekan) kalau nilai Re menurun dan kekerasan dinding membesar.

11. Kerugian tekanan dalam sistem pneumatik

Kerugian tekanan menyebabkan penurunan tekanan dan oleh sebab itu menyebabkan kerugian energi. Kerugian ini harus ditanggulangi oleh penggerakan (misalnya motor listrik) kompresor, yang terlihat dari naiknya
biaya energi. Oleh sebab itu harus selalu diusahakan agar kerugian tekanan ini tetap serendah mungkin. Biasanya kerugian tekanan \(\Delta \rho \) tidak boleh melampaui batas nilai 0,1 sampai 0,2 bar.

Besar kerugian tekanan dalam saluran antara lain tergantung pada:

a. Panjang saluran \(l_r \),

b. Saluran dalam pipa (diameter dalam saluran) \(d_l \),

c. Tekanan kerja \(p \) (atau \(p_1 \))

Hasil-hasil yang menguntungkan dapat diperoleh diameter pipa dibuat sebesar mungkin berkenaan dengan hal itu juga berarti bahwa diameter pipa yang besar memerlukan biaya penanaman modal yang lebih besar pula, sehingga diameter saluran tidak dapat dipilih ekstra besar begitu saja. Kerugian tekanan, diameter saluran dan penanaman modal selalu harus berada dalam perbandingan seimbang terhadap masing-masing. Dalam menghitung kerugian tekanan harus diperhatikan antara:

1. Aliran takmampumampat, dimana volume dan densitas (\(\rho \)) selalu konstan

2. Aliran mampumampat memuai, dimana densitas (\(\rho \)) berubah.

Gas-gas dan juga udara mampat berhubungan dengan aliran mampumampat memuai. Densitas \(\rho \) dari fluida yang mengalir berubah disebabkan oleh pemuaian yang timbul akibat penurunan tekanan. Penurunan suhu adalah minimal karena biasanya penurunan tekanan terjadi relatif perlahan-lahan pada kerugian tekanan dan kecepatan aliran yang timbul dalam praktek. Disamping itu masih terdapat cukup pengisian kalor dari luar, sehingga perubahan keadaannya berjalan hampir isotherm. Kerugian tekanan dari udara mampat yang memuai selama mengalira dalam saluran-saluran dapat dihitung dengan rumus-rumus berikut:

a. Dalam saluran datar (horizontal) (dengan diameter konstan):

\[
\Delta p = \frac{p_1^2 - p_2^2}{2p_1} = \lambda \cdot l_r \cdot \frac{\nu_1^2}{d_l} \cdot \frac{\rho_1}{2d_l} \tag{3.35}
\]
b. Dalam saluran tak datar dengan beda tinggi h (dalam m):

\[\Delta p = \lambda \frac{l_r v_1^2 \rho_1}{2d_1} \pm h \cdot g (\rho_m - \rho_1) \]

(3.36)

(Karena densitas udara tak berarti, beda tinggi h dalam banyak hal dapat diabaikan).

Dimana:

- \(p_1 \) dan \(p_2 \) = tekanan udara pada permulaan dan akhir saluran (dalam bar)
- \(\lambda \) = koefisien gesekan dalam pipa
- \(l_r \) = panjang saluran bagian dalam m
- \(d_1 \) = diameter bagian dalam saluran dalam m
- \(v_1 \) = kecepatan aliran pada permukaan saluran dalam m/s
- \(\rho_1 \) = densitas udara (dalam kg/) pada permukaan saluran (densitas kerja); densitas \(\rho_1 \) dan suhu \(T_1 \) (= 273 + t1).
- \(\rho_m \) = rata-rata secara ilmu hitung (arithmetic) densitas udara pada permulaan dan pada akhir saluran tegak (vertikal)
- \(\rho_i \) = densitas lingkungan
- \(G \) = percepatan gravitasi (= 9,81 m/s²)

1. Pada gas sempurna :

\[\rho_1 = \rho_n \cdot \rho_1 T_n / (P_n \cdot T_1) \] dalam kg/m³

2. Pada gas nyata:

\[\rho_1 = \rho_n \cdot \rho_1 T_n (P_n \cdot z_1 T_1) \] dalam kg/m³

\(z_1 \) = kemampumampatan (pada ketergantungan tekanan dan suhu; \(z_n = 1 \) dalam keadaan biasa)

\[z_1 = \rho_n \cdot \rho_1 T_n / (P_n \cdot T_1) \]

Di sini = tekanan normal (1,01 bar); \(T_n = \) suhu normal (273,16 K = 0 °C) \(Q \) atau \(V \) = aliran volume dalam m³/h; \(Q_1 = \) aliran volume pada saluran masuk (pada \(p_1 \) dan \(T_1 \)); \(Q_n \), aliran (pada \(P_n \) dan \(T_n \)). Koefisien kemampumampatan udara (pada suhu = 12 °C) diberikan pada tabel berikut:
Kalau penurunan tekanan kecil, jadi perubahan densitasnya tidak berarti, seringkali dapat digunakan rumus pendekatan berikut (biasanya hanya berlaku untuk fluida kerja yang tak mampumampatan).

\[
\Delta p = \rho_2 - \rho_1
\]

\[
\Delta p = \lambda . l . v . \frac{\rho}{2d_i} \pm h . g (\rho - \rho_l) \text{ N/m}^2
\]

(3.37)

Kesalahan \(f \) yang dibuat orang disini, \(f = 0,5 (\rho_1 - \rho_2) / \rho \times 100\% \) paling tinggi sebesar 1%. Ini berarti bahwa \(\Delta \rho \) rata-rata yang ditentukan hanya 0,5 % terlampau rendah. Koefisien gesekan \(\lambda \) didekatkan pada nilai kekasaran biasa dari dinding saluran melalui persamaan:

\[
\lambda = 0,0561/Q_g^{0.148}
\]

dengan \(Q_g = \) arus volume udara dalam kg/h (1kg/h = 1/(1,3 x 60) = 1/78 m³/menit).

Dalam penentuan secara grafik dari rugi tekanan dalam saluran-saluran biasanya digunakan monogram menurut gambar 3.78, yang dimulai pada titik potong aliran volume \(Q \) dan tekanan kerja \(p \). pengembangan selanjutnya menjadi jelas kalau garis titik-titik diikuti (contoh), monogram ini juga dapat digunakan untuk diameter saluran yang lebih besar dari 150 mm; kerugian tekanan yang dipastikan harus dikoreksi dengan faktor perkalian berikut:

<table>
<thead>
<tr>
<th>(d) dalam mm</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor</td>
<td>0.24</td>
<td>0.08</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Contoh perhitungan.

Diketahui:
Saluran dengan diameter $d_l = 50$ mm ($=0,05$) dan panjang $l_r = 200$ m harus dilalui aliran udara (aliran volume) $Q = 10$ m3/menit. Tekanan kerja $p = 8$ bar (tekanan lebih 7 bar) dan suhu udara $t = 20$ °C ($T = 293$ K).

Ditanya:
Kecepatan aliran v (dalam m/s), aliran massa Q_g yang sesungguhnya diserahkan (dalam kg/h) dan kerugian tekanan $\Delta \rho$. Koefisien gesekan λ (lihat pula gambar 3.13) lebih kurang 0,02; penampang pipa $A_p = \pi d^2/4 = 19,6$ cm2

![Gambar 3.13. Koefisien hambatan (koefisien kerugian gesekan) λ sebagai fungsi angka Reynolds Re](image)

Penyelesaian:
Diagram persamaan ini.

$$v = \frac{g}{t.P} \cdot \frac{10.000}{A_p}$$

$$v = \frac{100.000}{60 \cdot 8 \cdot 19,6} = 10,6 \text{ m/s}$$

$Q_g = 1,3 \cdot 60 \cdot Q = 78 \cdot 10 = 780 \text{ kg/h}$

Dari $p \cdot v = m \cdot R \cdot T$, sehingga menghasilkan
\[
\frac{m}{v} = \frac{p}{RT}
\]

Jadi:
\[
\Delta \rho = \lambda \frac{l_r \cdot v^2 \cdot \rho}{2d} = \lambda \frac{l_r \cdot v^2 \cdot \rho}{2 \cdot R \cdot T \cdot d}
\]

Dengan persamaan ini:
\[
\Delta \rho = 0,02 \cdot \frac{200 \cdot 10,6^2 \cdot 8 \cdot 10^3}{2 \cdot 287 \cdot 293 \cdot 0,05} = \lambda \frac{l_r \cdot v^2 \cdot \rho}{2 \cdot R \cdot T \cdot d} = 0,43 \cdot 10^5 \frac{N}{m^2} = 0,43 \text{ bar}
\]

12. Rugi Tekanan Aliran Fluida Cair Di Dlm Pipa

Gesekan yang terjadi antar partikel fluida dan antara dinding dalam pipa dengan fluida alir disebut rugi tekanan. Besarnya rugi tekanan pada aliran fluida di dalam pipa tergantung dari jenis aliran itu. Darcy-Weisbach memberikan rumus untuk menghitung rugi tekanan aliran fluida di dalam pipa, untuk semua jenis aliran, yakni:

\[
h = f \frac{l \cdot v^2}{d \cdot 2g}
\]

(3.38)

dengan:

\(h \): rugi tekanan aliran fluida di dalam pipa (m)
\(f \): faktor gesekan Darcy-Weisbach

Bila aliran turbulen, factor gesekan Darcy Weisbach dapat dibaca pada Gambar 3.79. Bila aliran laminar, factor gesekan Darcy-Weisbach:

\[
f = \frac{64}{R}
\]

(3.39)

Nilai factor gesekan \(f \) pada aliran turbulen merupakan besaran tanpa dimensi yang niainya tergantung dari reynold number dan kekasaran relative permukaan dinding pipa bagian dalam. Kekasaran relatif merupakan perbandingan kekasaran permukaan rata-rata terhadap diameter dalam pipa.
D. Aktivitas Pembelajaran

Aktivitas Pengantar

Mengidentifikasi Isi Materi Pembelajaran (Diskusi Kelompok, 1 JP)

Sebelum melakukan kegiatan pembelajaran, berdiskusilah dengan sesama peserta diklat di kelompok Saudara untuk mengidentifikasi hal-hal berikut, dan kerjakan LK-00:

LK-00:

1. Apa saja hal-hal yang harus dipersiapkan oleh saudara sebelum mempelajari materi pembelajaran sensor termocouple? Sebutkan dan jelaskan!

……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………

2. Bagaimana saudara mempelajari materi pembelajaran ini? Jelaskan!

……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………

3. Ada berapa dokumen bahan bacaan yang ada di dalam Materi pembelajaran ini? Sebutkan!

……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………
4. Apa topik yang akan saudara pelajari di materi pembelajaran ini? Sebutkan!

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

5. Apa kompetensi yang seharusnya dicapai oleh saudara sebagai guru kejuruan dalam mempelajari materi pembelajaran ini? Jelaskan!

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

6. Apa bukti yang harus diunjukkerjakan oleh saudara sebagai guru kejuruan bahwa saudara telah mencapai kompetensi yang ditargetkan? Jelaskan!

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

Aktivitas 1. Mengamati Kegiatan Pemeliharaan Sensor Termocouple

Saudara diminta untuk mengamati kondisi kegiatan prinsip kerja Termocouple pada gambar berikut ini, dan Kerjakan LK2:
Saudara mungkin mempunyai pandangan yang berbeda dari teman-teman lain tentang kondisi kegiatan prinsip kerja termocouple pada gambar. Apa yang Saudara temukan setelah mengamati kegiatan pemeliharaan pada gambar tersebut? Apakah ada hal-hal yang baik atau sebaliknya yang saudara temukan? Diskusikan hasil pengamatan Saudara dengan anggota kelompok Saudara. Selanjutnya jawab pertanyaan pada LK-01 berikut ini:

LK-01:

1. Mengapa diperlukan kegiatan prinsip kerja sensor termocouple? Tuliskan!, kegiatan apa saja yang perlu dilakukan untuk menggunakan sensor termocouple? Apa yang akan terjadi jika tidak menggunakan sensor termocouple dengan benar?

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
2. Menurut Saudara kegiatan memahami prinsip kerja sensor termocouple perlu pemahaman ekstra?

..
..
..
..
..
..
..
..
..

3. Apa yang harus Saudara lakukan selaku guru kejuruan apabila melihat kondisi fasilitas praktek yang tidak optimal?

..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
Hasil diskusi dapat Saudara tuliskan pada kertas plano dan dipresentasikan kepada anggota kelompok lain. Kelompok lain menanggapi dengan mengajukan pertanyaan atau memberikan penguatan. Saudara dapat membaca Bahan bacaan tentang prosedur prinsip kerja sensor termocouple.

Aktivitas 2: Mengamati Proses pengukuran termocouple

Setelah Saudara mencermati gambar diatas tentang proses pengukuran termocouple selanjutnya saudara akan mendiskusikan bagaimana cara melakukan pengukuran termocouple dengan baik dan benar. Untuk kegiatan ini Saudara harus menjawab pertanyaan-pertanyaan Pada LK-02 berikut ini.

LK-02:
1. Apa yang Saudara ketahui tentang proses pengukuran sensor termocouple?

..
..
..
..
..
..
..
..
..
..
..
..
2. Mengapa Saudara melakukan pengukuran dengan sensor termocouple?

3. Menurut pendapat Saudara mengapa pengukuran sensor termocouple penting bagi kelangsungan kinerja pengolahan migas?

Aktivitas 3: Mengamati Sistem Instrumentasi berbasis computer

Setelah Saudara mencermati gambar kegiatan Sistem Instrumentasi berbasis computer, Saudara akan mendiskusikan bagaimana memahami Sistem Instrumentasi berbasis computer. Untuk kegiatan ini Saudara harus menjawab pertanyaan-pertanyaan Pada LK-03 berikut ini.

LK-03:
1. Apa yang Saudara ketahui tentang Sistem Instrumentasi berbasis computer?
2. Mengapa Saudara melakukan pengamatan tentang Sistem Instrumentasi berbasis computer?

3. Menurut pendapat Saudara mengapa Sistem Instrumentasi berbasis computer penting bagi kelangsungan kinerja pekerja?

4. Apakah Sistem Instrumentasi berbasis computer dapat meningkatkan performansi pekerja? Mengapa?
Aktivitas 4: Memahami Kembali Setting Pressure Switch

Setelah Saudara mencermati gambar Setting Pressure Switch, saudara akan mendiskusikan bagaimana cara melakukan pengukuran dengan
Setting Pressure Switch. Untuk kegiatan ini Saudara harus menjawab pertanyaan-pertanyaan pada LK-04 berikut ini.

LK-04:

1. Apa yang Saudara ketahui tentang sensor Setting Pressure Switch?

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

2. Mengapa Saudara melakukan pengukuran dengan Setting Pressure Switch?

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

3. Menurut pendapat Saudara mengapa pengukuran dengan Setting Pressure Switch sangat penting?

…………………………………………………………………………………………
…………………………………………………………………………………………
4. Apakah pengukuran dengan Setting Pressure Switch dapat meningkatkan performansi pekerja migas? Mengapa?
Aktivitas 5: Memeriksa Sistem Kontrol Distributed Control System (DCS) (3 JP)

Setelah Saudara mencermati gambar Sistem Kontrol Distributed Control System (DCS), maka saudara akan mendiskusikan mengamati DCS. Untuk kegiatan ini Saudara harus menjawab pertanyaan-pertanyaan pada LK-05 berikut ini.

LK-05:

1. Apa yang Saudara ketahui tentang Sistem Kontrol Distributed Control System (DCS)?

..
..
..
..
..
..
..
..
..
..
2. Mengapa Saudara melakukan pengukuran dengan Sistem Kontrol Distributed Control System (DCS)?

3. Menurut pendapat Saudara mengapa Sistem Kontrol Distributed Control System (DCS) sangat penting dalam dunia migas?

4. Apakah Sistem Kontrol Distributed Control System (DCS) bisa meningkatkan kinerja karyawan perusahaan? Mengapa?
Aktivitas 6: Memeriksa pemasangan Flowmeter (2 JP)
Setelah Saudara mencermati gambar metoda pemasangan Flowmeter Saudara akan mendiskusikan tentang metoda pemasangan Flowmeter. Untuk kegiatan ini Saudara harus menjawab pertanyaan-pertanyaan pada LK-06 berikut ini.

LK-06:

1. Apa yang Saudara ketahui tentang metoda pemasangan Flowmeter?

..
..
..
..
..
..
..
..
..
..

2. Mengapa Saudara pemahaman tentang metoda pemasangan Flowmeter?

..
..
..
..
..
..
..
..
..
..
..

3. Menurut pendapat Saudara mengapa metoda pemasangan Flowmeter sangat penting?
4. Apakah metoda pemasangan Flowmeter di perlukan dalam dunia migas?
Mengapa? Jelaskan?
8. Sebutkan dua sifat fisik dari fluida yang paling penting?

9. Sebutkan Jenis-jenis Variable Area flowmeters?

10. Bagaimana Prinsip operasi dari rotameter?

11. Jelaskan tentang Kelanjutan evolusi sistem kontrol tradisional?

12. Jelaskan Pengertian dari Primary Sensing Element (Sensor)?

13. Sebutkan dan jelaskan 2 macam Turbin Flowmeter?

14. Besar kerugian tekanan dalam saluran tergantung pada?

15. Saluran dengan diameter \(d \) = 100 mm (=0,1 m) dan panjang \(l \) = 400 m harus dilalui aliran udara (aliran volume) \(Q= 20 \text{ m}^3/\text{menit} \). Tekanan kerja \(p \) = 10 bar (tekanan lebih 7 bar) dan suhu udara \(t = 27 ^\circ \text{C} \) (T= 300 K)?

F. Rangkuman

1. Thermocouple adalah sensor suhu, thermocouple sering digunakan untuk industri pengolahan minyak atau baja. Thermocouple adalah transduser suhu aktif yang tersusun dari dua buah logam berbeda dengan titik pembacaan pada pertemuan kedua logam dan titik yang lain sebagai outputnya.

2. Prinsip kerja Termokopel cukup mudah dan sederhana. Pada dasarnya Termokopel hanya terdiri dari dua kawat logam konduktor yang berbeda jenis dan digabungkan ujungnya.

3. Tipe – tipe tercouple adalah:

 a. Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))
 b. Tipe E (Chromel / Constantan (Cu-Ni alloy))
 c. Tipe J (Iron / Constantan)
 d. Tipe J memiliki sensitivitas sekitar \(~52 \mu \text{V/}^{\circ} \text{C}~\)
 e. Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))
 f. Termokopel tipe B, R, dan S
 g. Type T (Copper / Constantan)

4. Tujuan dari penerapan sistem instrumentasi dan kontrol di dalam industri proses adalah berkaitan dengan segi ekonomis. Oleh karena itu instrumentasi dan system kontrol yang diterapkan diharapkan dapat menghasilkan :
1. Kualitas produk yang lebih baik dalam waktu pemrosesan yang lebih singkat.
2. Biaya produksi yang lebih murah, oleh karena:
 · Penghematan bahan mentah dan bahan bakar.
 · Peningkatan efisiensi waktu mesin dan pekerja.
 · Pengurangan produksi yang rusak (off spec.).
3. Peningkatan keselamatan personil dan peralatan.
4. Pengurangan polusi lingkungan dari bahan limbah hasil proses.

5. Bourdon Tube adalah alat ukur tekanan nonliquid. Alat ukur ini secara luas digunakan didalam industri proses untuk mengukur tekanan statis pada beberapa aplikasi. Bentuk dari bourdon tube terdiri dari element (C-type, helical dan spiral) dan dihubungkan secara mekanikal dengan jarum indicator.

6. Ada tiga tipe tabung bourdon, yaitu :

 a. **C-type Bourdon Tube**
 Digunakan untuk range 15 ~ 100.000 psig dengan range akurasi (± 0.1 ~ ± 5) % span.

 b. **Spiral Bourdon Tube**
 Digunakan secara umum pada range tekanan menengah (medium pressure), tetapi untuk tugas berat juga tersedia dalam range hingga 100.000 psig. Range akurasinya sekitar ± 0.5 % dari span.

 c. **Helical Bourdon Tube**
 Digunakan pada range dari 100 ~80.000 psig dengan akurasi sekitar ±½ ~ ± 1 % dari span.

7. Pengukuran aliran fluida adalah sangat penting di dalam suatu industri proses seperti kilang minyak (refinery), pembangkit listrik (power plant) dan industri kimia (petrochemical).
8. Persamaan Bernoulli : Hukum kekekalan energi menyatakan bahwa bila tidak ada perpindahan panas dan kerja yang dilakukan, maka energi fluida disetiap titik sepanjang pipa akan tetap konstan.

9. Parameters Turbine Meter
Terminologi yang secara luas digunakan dalam aplikasi turbine meter, yaitu :
 a. Accuracy
 b. Repeatability
 c. Rangebility

10. Dalam pemilihan, perhitungan - perhitungan dan konstruksi instalasi pneumatik sangat penting diketahui berapa besarnya kerugian tekanan dan aliran yang akan terjadi. kerugian ini akan menentukan :
 a. Tekanan yang diinginkan
 b. Hasil yang diinginkan
 c. Efesiensi onderdil-ondedril pneumatik
 d. Jaminan kerja dan efisien instalasi pneumatik
 e. Luas dan kecepatan hutang dari sistem pneumatik
 f. Diameter pipa-pipa dan atau saluran-saluran

G. Umpan Balik dan Tindak Lanjut
4. Bagaimana cara saudara untuk meningkatkan kemampuan saudara dalam penguasaan materi pembelajaran? Jelaskan?
5. Apa yang saudara lakukan sebagai seorang guru kejuruan Teknik pengolahan minyak, gas dan petrokimia untuk dapat menambah pengetahuan saudara setelah membaca modul ini? Jelaskan?
7. Dalam melakukan pengukuran rugi tekanan apa saja yang bisa saudara lakukan?
8. Saat saudara melakukan pengamatan tentang turbin meter apa saja yang bisa saudara lakukan agar saudara bisa lebih menguasai tentang pengukuran turbin meter?

9. Berdasarkan pengukuran menggunakan bordon meter apa saja yang bisa saudara amati, kemudian apakah saudara bisa melakukan perhitungan tekanan dengan bordon meter, jelaskan?

10. Sebutkan tahapan – tahapan yang saudara lakukan untuk melakukan pengukuran aliran fluida?

11. Sebutkan macam – macam pengukuran aliran fluida?

12. Apa saja yang saudara gunakan dalam melakukan pengukuran Displacement Flowmeters (DP-meter), jelaskan?

13. Bagaimana saudara mencari persentase kesalahan dalam pengkururan Pressure Drop? Jelaskan dan buat contoh perhitungannya?

H. Kunci Jawaban

1. Thermocouple adalah suatu sensor temperatur termoelektris yang terdiri dari dua kawat logam yang berlainan (misalnya chromel dan constantan) dengan penggabungannya pada probe tip (measurement junction) dan reference junction (temperature yang diketahui).

2. Termocouple tersusun dari dua buah logam berbeda dengan titik pembacaan pada pertemuan kedua logam dan titik yang lain sebagai outputnya. Thermocouple merupakan salah satu sensor yang paling umum digunakan untuk mengukur suhu karena relatif murah namun akurat. Thermocouple dapat beroperasi pada suhu panas maupun dingin.

3. Bare wire, insulated junction, dan grounded junction

4. Prinsip kerja Termokopel cukup mudah dan sederhana. Pada dasarnya Termokopel hanya terdiri dari dua kawat logam konduktor yang berbeda jenis dan digabungkan ujungnya. Satu jenis logam konduktor yang terdapat pada Termokopel akan berfungsi sebagai referensi dengan suhu konstan (tetap)
sedangkan yang satunya lagi sebagai logam konduktor yang mendeteksi suhu panas.

5. a. Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))
 Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu −200 °C hingga +1200 °C.

b. Tipe E (Chromel / Constantan (Cu-Ni alloy))
 Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah, tipe E adalah tipe non magnetik.

c. Tipe J (Iron / Constantan)
 Rentangnya terbatas (−40 hingga +750 °C) membuatnya kurang populer dibanding tipe K

d. Tipe J memiliki sensitivitas sekitar ~52 µV/°C

e. Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))
 Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum.

f. Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).

g. Type T (Copper / Constantan)
 Cocok untuk pengukuran antara −200 hingga 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari konstantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C

7. Kelebihan
 - Biaya pengadaan awal : rendah
 - Tidak ada bagian yang bergerak (No moving parts)
 - Range pengukuran : lebar (0 ~ 5000°F)
 - Response time singkat / pendek
 - Repeatability : cukup baik

Kekurangan
 - Hubungan temperature dan tegangan tidak linear penuh
 - Sensitivitas rendah, umumnya 50 μV/°C (28 μV/°F) atau lebih rendah (tegangan rendah rentan dengan noise).
 - Accuracy pada umumnya tidak lebih baik dari pada 0.5 °C (0.9°F), tidak cukup tinggi untuk beberapa aplikasi
 - Memerlukan suatu acuan temperatur yang dikenal, umumnya temperature air es 0°C (32°F). Modern thermocouple mengacu pada suatu acuan yang dihasilkan secara elektris.

8. Sifat fisik fluida ada dua sifat yang paling penting, yaitu viskositas (viscosity) dan rapat massa (density).

9. Jenis-jenis Variable Area flowmeters
 a. Rota meters
 b. Movable Vane Meter
 c. Weir, Flume
10. Prinsip operasi dari rotameter (variable area meters) didasarkan pada pelampung (float) yang berfungsi sebagai penghalang aliran, pelampung tersebut akan melayang dalam suatu tabung yang mempunyai luas penampang tidak konstan. Luas penampang tabung berubah tergantung ketinggiannya (semakin tinggi semakin besar).

12. Primary Sensing Element (Sensor) adalah suatu alat yang pertama kali menerima suatu bentuk energi dari media yang akan diukur, dan menghasilkan suatu output yang sebanding dengan nilai besaran yang diukur.

13. Ada dua macam turbine flow meter:

1. Mechanical Turbine Flow Meter
 Turbine / sudu-sudu meter akan berputar karena adanya aliran, selanjutnya gerakan ini diteruskan ke mechanical counter untuk pembacaan jumlah fluida yang mengalir.

2. Electric Turbine Flow Meter
 Setiap kali sudu-sudu melewati pick-up coil, maka akan diinduksikan pulsa-pulsa pada pick-up coil tersebut.

14. Besar kerugian tekanan dalam saluran antara lain tergantung pada:
 a. Panjang saluran \(l_r \),
 b. Saluran dalam pipa (diameter dalam saluran) \(d_l \),
 c. Tekanan kerja \(p \) (atau \(p_1 \))
15. Penyelesaian:

Diagram persamaan ini.

\[
v = g \frac{10.000}{t.P. A_p}
\]

\[
v = \frac{100.000}{60 \cdot 10 \cdot 79,62} = 2,1 \text{ m/s}
\]

\[Q_b = 1,3 \cdot 60 \cdot Q = 78 \cdot 10 = 780 \text{ kg/h}
\]

Dari \(p.v = m . R . T \), sehingga menghasilkan

\[
\rho \frac{m}{v} = \frac{p}{RT}
\]

Jadi:

\[
\Delta \rho = \lambda \frac{l_r . v^2 . \rho}{2d} = \lambda \frac{l_r . v^2 . \rho}{2 . R . T . d}
\]

Dengan persamaan ini:

\[
\Delta \rho = 0,02 \cdot \frac{200 \cdot 2,1^2 \cdot 10^3}{2 \cdot 287 \cdot 300 \cdot 0,1} = \lambda \frac{l_r . v^2 . \rho}{2 . R . T . d} = 10 \frac{N}{m^2} = 0,0001 \text{ bar}
\]

I. Evaluasi

1. Air yang mengalir dalam sebuah pipa yang berdiameter 6 cm berkecepatan 1,5 m/det. Berapa kecepatan air dalam pipa yang berpenampang dengan diameter 3 cm, jika pipa ini dihubungkan dengan pipa pertama dan semia pipa penuh. (jawab : 6 m/s)

2. Pipa dengan penampang 2 cm\(^2\) dialiri air dengan kecepatan 2 m/s.

 Ditanyakan : Berapa cm\(^3\) dapat dialirkan tiap menit (jawab : 24.000 cm\(^3\))

 Berapa kecepatan alir air bila pipa dihubungkan dengan pipa yang berpenampang 1 cm\(^2\)) (jawab : 400 cm/s)
3. Perhatikan alat sepeti tergambar di sebelah kanan
 Berapa kecepatan air yang dipancarkan lewat lobang L. jika tekanan terhadap air 10^6 Pa dan tekanan udara Luar 10^5 Pa dan apabila kecepatan air dalam reservoir Boleh diabaikan. (jawab : $30\sqrt{2}$ m/s)

4. Sebuah tangki berisi air dan mempunyai kran setinggi 2 meter di atas tanah. Jika kran dibuka, maka air akan memancar keluar dan jatuh pada jarak horizontal sejauh 15 m dari kran. Berapa tinggi permukaan air dari kran, jika percepatan gravitasi bumi 10 m/s2 dan kecepatan turunnya air boleh diabaikan. (jawab : 28,125 m)

5. Sebuah pipa panjang memiliki penampang berbeda pada empat bagian. Luas penampang pipa berturut-turut pada bagian 1, bagian 2, bagian 3 adalah 150 cm2, 100 cm2 dan 50 cm2. Laju aliran air pada bagian 1 adalah 8 m/s. Sedangkan pada bagian 4 adalah 4,8 m/s. Tentukanlah:
 Debit air melalui keempat penampang itu (jawab : 0,12 m3/s)
 Luas penampang pada bagian 4 (jawab : 250 cm2)
 Laju air pada bagian 2 dan 3 (jawab : 12 m/s, 24 m/s)

6. Sebuah pipa air memiliki dua penampang yang berbeda. Diameter masing-masing penampang adalah 15 cm dan 10 cm. Jika laju aliran pada penampang yang kecil adalah 9 m/s. Berapakah laju aliran pada penampang yang besar ? (jawab : 4 m/s)

7. Sebuah tangki berisi air, pada jarak 20 meter di bawah permukaan air pada tangki itu terdapat kebocoran.
 Berapa kecepatan air yang memancar dari lubang tersebut. (jawab : 20 m/s)
 Bila luas lubang 1×10^{-6} m2. Berapa liter volume air yang keluar dalam 1 detik. (0,02 liter)

8. Air mengalir melalui sebuah pipa mendatar yang luas penampangnya berbeda, penampang X = 8 cm2, kecepatan air adalah 3 cm/s. Tentukanlah:
Kecepatan air pada penampang Y yang luasnya 2 cm\(^2\). (jawab : 12 cm/s)
Beda tekanan antara X dan Y (jawab : 6,75 N/m\(^2\))

9. Pada suatu pipa mendatar yang luas penampangnya 30 cm\(^2\), tekanan statis air yang mengalir dengan aliran stasioner adalah 6,5 \(\times\) \(10^4\) Pa dan tekanan totalnya adalah 6,7 \(\times\) \(10^4\) Pa. Hitung:
Kecepatan aliran air (2 m/s)
Debit air yang melalui pipa (jawab : 6 liter/s)

10. Sebuah pipa silindris lurus memiliki diameter 10 cm. Pipa tersebut diletakkan horizontal, sedangkan air mengalir didalamnya dengan kecepatan 2 m/s. Diujung pipa terdapat mulut pipa dengan diameter 1,25 cm. Berapa kecepatan air yang keluar dari mulut pipa. (jawab : 128 m/s). Bila mulut pipa berhubungan dengan udara luar, berapa tekanan air di dalam mulut pipa jika \(P_{bar} = 1 \times 10^5\) Pa. (jawab : 82,9 \(\times\) \(10^5\) Pa)

11. Air mengalir dengan aliran stasioner sepanjang pipa mendapat yang luas penampangnya 20 cm\(^2\) pada suatu bagian dan 5 cm\(^2\) pada bagian yang lebih sempit. Jika tekanan pada penampang yang lebih sempit adalah 4,80 \(\times\) \(10^4\) Pa dan laju alirannya 4 m/s, Tentuknlah:
Laju aliran (jawab : 1 m/s)
Tekanan pada penampang yang besar (jawab : 5,55 \(\times\) \(10^4\) Pa)

12. Dalam suatu pipa, ada air mengalir. Di suatu tempat, laju air adalah 3 m/s, sedangkan di tempat lain yang terletak 1 meter lebih tinggi, laju air adalah 4 m/s. Berapakah tekanan air di tempat yang tinggi bila tekanan air di tempat yang rendah 2 \(\times\) \(10^4\) Pa. (jawab : 6,5 \(\times\) \(10^3\) N/m\(^2\))
Berapa tekanan air di tempat yang tinggi bila air dalam pipa berhenti dan tekanan air di tempat yang rendah 1,8 \(\times\) \(10^4\) Pa. (jawab : 8 \(\times\) \(10^3\) N/m\(^2\))

13. Sebuah pipa lurus mempunyai dua macam penampang, masing-masing 0,1 m\(^2\) dan 0,05 m\(^2\). pipa tersebut diletakkan miring. Sehingga penampang kecil berada 2 m lebih tinggi daripada penampang besar. Tekenan air pada
penampang kecil adalah $2 \cdot 10^5$ Pa. Dan laju air pada penampang besar 5 m/s. Tentukanlah:
laju air dalam penampang kecil dan tekanan air pada penampang besar?
(jawab : 10 m/s ; $2,575 \cdot 10^5$ Pa).
Volume air yang melalui pipa per-menit (jawab : 30 m3)
BAB IV
PENUTUP

Modul Guru Pembelajar pengolahan minyak, gas dan petrokimia kompetensi B bagi Guru pasca UKG ini disusun ini merupakan bahan pelajaran atau materi yang harus dipelajari oleh guru pasca UKG. Semoga modul Guru Pembelajar pengolahan minyak, gas dan petrokimia kompetensi B bagi Guru pasca UKG ini dapat bermanfaat dan bias mengarahkan dan membimbing peserta diklat terutama para guru dan widyaiswara/fasilitator untuk menciptakan proses kolaborasi belajar dan berlatih dalam pelaksanaan diklat pengembangan keprofesian berkelanjutan.
DAFTAR PUSTAKA

Sobrty,S dan Pupuh,F,2010,Strategi Belajar Mengajar, bandung Reflika Aditama